Preliminary results from global and Regional ensemble ocean forecasting

Patrick Hogan, Emanuel Coelho, Prasad Thoppil, Germana Peggion, Ole Martin Smedstad

Naval Research Laboratory
Stennis Space Center, MS

Layered Ocean Model Workshop
University of Michigan
Ann Arbor, MI
21-23 May
Objective: Extend forecasting from:

- Deterministic (single forecast) to stochastic (probabilistic) \textit{in}
- Space (from regional to global) \textit{and}
- Time (from \(~7 \text{ days to } \sim 30-60 \text{ days})
- Via ensemble modeling
Objective: Extend forecasting from:

• Deterministic (single forecast) to stochastic (probabilistic) in
• Space (from regional to global) and
• Time (from ~7 days to ~30-60 days)
• Via ensemble modeling

Outline:

• Initial capability based on NCOM in Gulf of Mexico

• Preliminary Global “ensembles of opportunity”

• Proposed global ensemble forecasting
• Based on HYCOM
• Unique and specific challenges
NCODA - NRL Coupled Ocean Data Assimilation - Cummings, QJRMS, 2005
COAMPS - Coastal Ocean Atmosphere Mesoscale Prediction System

- 3km grid / 49 levels (33 sigma, 16 z)
- NRL DBDB2’ bathymetry
- COAMPS 27km forcing
- Lateral BCs by G-HYCOM (GOFS 3.0)
- OSU OTIS tides at boundaries
- Assimilates data from any source available in real-time
 - Satellites (SST, SSH)
 - In situ obs (XBTs, CTDs, floats, buoys gliders, ships)
- 3D Forecasts to 72 hours/60 days
 - T, S, currents, elevation
Task 1: Running two “control runs”

Analysis valid on 8 Jan. 2013

Control run no. 1: Produces a 3 day forecast once per day
(assimilate local profile observations only, 24 hr window)

Control run no. 2: Produces a 60 day forecast once per week
(assimilate synthetic and observed profiles, 7 day window)

Note: 60 day forecasts required the construction “high-frequency” climatological forcing files (more realistic spatial and temporal variability than persistence or seasonal/annual climatology)

Note: 2003-2012; 10 records for Jan 1 000z, 003z, 006z… - Dec. 31 021z
Oil Map integrating NOAA calibrated estimates and actual observations

Why Ensembles?

- Deterministic forecast only captures one possible trajectory and will likely diverge from reality esp. for extended range forecasts
- Done properly, ensemble will include the true state
- Ensemble provides the forecast error/uncertainty
- Ensembles can be calibrated to refine the forecast

Color bar is concentration and is correlated to thresholds from BONN agreement for oil appearance code
Ensemble Approach to Quantifying Ocean Uncertainty

The spread and growth of the Initial Condition (the perturbations) is determined by the forecast error variance via the Ensemble Transform (ET) – Bishop and Tooth (1999).

Analysis error estimate – standard dev. of the ensemble set
Uncertainty – described through the PD of state parameters through the ensemble
Ensemble Fields for 16 Jan. 2013 (the analysis)

Calculated over 20 ensemble members

[SST (°C), Mean, SSS (psu), Mean, MLD (m), Mean]

[SST, Std. Dev., SSS, Std. Dev., MLD, Std. Dev.]
Ensemble Forecasting Concept of Operations (CONOPS)

24 hour forecasts are run daily, 8-week forecasts are run every weekly (Sunday)

To Date:
Jan. 27 – Mar. 24
Feb. 03 – Mar. 31
Feb. 10 – Apr. 07
Feb. 17 – Apr. 14
Feb. 24 – April 21
Mar. 03 – Apr. 28
Mar. 10 – May 05
Mar. 17 – May 12
Mar. 24 – May 19
Mar. 31 – May 26
Apr. 07 – Jun. 02
Apr. 14 – Jun. 09
Apr. 21 – Jun. 16
Apr. 28 – Jun. 23
May 05 – June 30

- Currently running on NRL Linux Cluster
- 32 ensemble members
- Daily run: 96 CPUs, ~ 2 hours
- Weekly run: 120 CPUs for 5 members, ~3.5 hours (32 members takes ~21 hours)
- Each member ~4.2 GB in netCDF format (~135 GB for 60-day 32 member ensemble once per day)
- Will eventually run at Naval Oceanographic Office (but stringent transition process and CONOPS)
February 24
4 wk.

February 17
3 wk.

February 10
2 wk.

February 03
1 wk.

March 03
5 wk.

March 10
6 wk.

March 17
7 wk.

March 24
8 wk.

Corresponding Analysis

January 27 Analysis with ensemble std. dev. (color) and 25°C ensemble mean

Forecast

Analysis
Ensemble mean 17 cm SSH

Temperature (°C), A=20130317, F=20130512, 32– Members
22°C at 100–m (contour), Ens Mean, Mean (shaded)

Ensemble mean temp (22°C @ 100m)

Ensemble mean salt (36.2 @ 200m)

GoM Ensemble Modeling
March 17 Analysis and 60-day forecast
(12 May 2013)
Objective: Identify areas and periods in the GOM over a 60 day long forecast where environmental conditions might produce operational impacts.

Operations Safety/Warning System
Variables: surface currents, vertical shear, wind, sea-state, SST, etc. Thresholds: magnitude levels that will impose risk on operations, relative weighting and identification of individual critical levels (small boats, drill stems, etc.)
Impacts/Thresholds Examples

• Surface Ocean Currents:
 very high impact if above 0.7m/s; high impact if above 0.5m/s and below 0.7m/s; moderate impact if between 0.25 and 0.5m/s; low impact if above 0.15m/s.

• Surface Winds:
 very high impact if above 30m/s; high impact if above 20m/s; moderate impact if above 10m/s; low impact if above 5m/s;

• Sea State:
 very high impact if above 3m; high impact if above 2m; moderate impact if above 1m; low impact if above 0.5m.
Single-Model Approach:
Use one forecast system and perturb some aspect of that system (initial state and atmospheric forcing) then integrate forward to obtain a forecast.

\[N \] different ensemble realizations

Note: Ensembles take \(N \) members as much computer time

Pro: develop one model
Con: do perturbations represent realistic variance?
Ensemble Approach to Ocean Forecasting

Single-Model Approach:
Use one forecast system and perturb some aspect of that system (initial state and atmospheric forcing) then integrate forward to obtain a forecast.

Multi-Model Approach:
Use forecast systems with different designs (physics, resolution, forcing, etc.), typically run by different operational centers or labs

N different ensemble realizations
Note: Ensembles take N members as much computer time
Pro: develop one model
Con: do perturbations represent realistic variance?

N different forecast systems
Pro: more variety across members
Con: limited number of members
Multi-Model Comparison: Sea Surface Height
11 February 2013
Multi-model Ensemble

Ensemble of 5 Model Runs for 20100701000

Temperature

Salinity

20 m 100 m 200 m

32-member Single Model Ensemble

Ensemble of 32 Model Runs for 20100701000, 3-Km RELO

Temperature

Salinity

20 m 100 m 200 m
Global “Ensembles of Opportunity”

- There were several global experiments with ~3 month overlap that were run as part of the normal development and improvement process such that the global simulations that differ by some parameter setting or technique.

- Not the proper way to develop and configure an extended range forecast capability (more on that soon).

Set 1 (2007): 5 used Cooper-Haines, 3 used MODAS synthetics. Two used 35 layers instead of 27. Some used an updated version of NCODA and one used mixed layer depth to modify the MODAS synthetic, etc.)

Set 2 (2012): All 3DVar, 32 vs. 41 layers, different ocean analysis configurations
SSH: Global Ensemble Variance vs. Time Variance

SSH variance calculated over 8 different models on 31 July 2007.

Uncertainty due to errors

SSH variance calculated from one simulation over 2008-2011.

Intrinsic uncertainty
SSS: Global Ensemble Variance vs. Time Variance

SSS variance calculated over 8 different models on 31 July 2007.

Uncertainty due to errors

SSS variance calculated from one simulation over 2008-2011.

Intrinsic uncertainty
SST: Global Ensemble Variance vs. Time Variance

SST variance calculated over 8 different models on 31 July 2007.

Uncertainty due to errors

SST variance calculated from one simulation over 2008-2011.

Amplitude of the annual cycle removed
SST: Global Ensemble Variance vs. Time Variance

SST variance calculated from one simulation over 2008-2011.

Experiment 25.0 excluded
Objective: Extend the Range of Ocean Forecasts in Space (up to global) and in time (up to 30 days) using a stochastic forecast capability

Science objectives:

• Account for the relevant sources of uncertainty on an ocean ensemble forecast.
• ET global / banded appropriate for atmosphere, not ocean
• Reduce enormous information content in ensemble to a best forecast through Maximum Likelihood estimate
• Calibrate ensemble for bias / drift through use of observations
• Testing, benchmarking, demonstration of skill

{Stochastic parameterization

Sources of uncertainty

Localization of Ensemble Trans.}

Run ensembles

Post calibration/ Bias correction

Generate PDFs

Maximum Likelihood Estimates

New extended range forecast

Testing and Demo
Objective: Extend the Range of Ocean Forecasts in Space (up to global) and in time (up to 30 days) using a stochastic forecast capability

The challenge is to account for neglected or ill-represented processes in the deterministic models associated with subgrid scale processes.

This can lead to insufficient ensemble spread needed to capture the true forecast or even to encompass climatology for longer-range forecasts, as well as insufficient forecast error variance over the length of the forecast.

Here the model errors are modeled using unbiased random noise with an exponential decorrelation in time.

Differences between a deterministic and Stochastic 1-day forecast started from same Initial condition (Lermusiaux, 2006).
Objective: Extend the Range of Ocean Forecasts in Space (up to global) and in time (up to 30 days) using a stochastic forecast capability

Stochastic parameterization

Localization of Ensemble Trans.

Run ensembles

Post calibration/ Bias correction

Generate PDFs

Maximum Likelihood Estimates

- The challenge is to localize the ET to scale and account for local error statistics
- This will not scale to global applications because the number of ensemble members is << than the degrees of freedom (model dimensions) of the model state.
- Solution: localized ET solutions on multiple subdomains or along dynamically adaptive subdomains:

 Banded and block application of the ET to NOGAPS (McClay et al., 2009)

New extended range forecast

Testing and Demo
Objective: Extend the Range of Ocean Forecasts in Space (up to global) and in time (up to 30 days) using a stochastic forecast capability

Stochastic parameterization

Localization of Ensemble Trans.

Run ensembles

Post calibration/ Bias correction

Generate PDFs

Maximum Likelihood Estimates

- Ocean analysis configuration
- Number of ensembles
- Computational resources

New extended range forecast
Objective: Extend the Range of Ocean Forecasts in Space (up to global) and in time (up to 30 days) using a stochastic forecast capability

- Stochastic parameterization
- Localization of Ensemble Trans.
- Run ensembles
- Post calibration/Bias correction
- Generate PDFs

Sources of uncertainty:

New extended range forecast

Post calibration/Bias correction

Maximum Likelihood Estimates

Testing and Demo

Prior likelihood function

Posterior function

\[
 p(x \mid y^a) = \frac{p(y^a \mid x)}{p(y^a)} \times p(x)
\]

x = ocean state
p(x) = global ensemble distribution
y^a = constraints from other sources

Challenge: To account for global vs. local biases in key variables and optimize spread skill over regions and variables of interest.

This can be done via Bayesian Analysis using the local NCODA analysis, other sources of information (regional runs if available), and climatology as constraints to compute the likelihood functions from the prior ensemble population.
Objective: Extend the Range of Ocean Forecasts in Space (up to global) and in time (up to 30 days) using a stochastic forecast capability

- Stochastic parameterization
- Localization of Ensemble Trans. (Sources of uncertainty)
- Run ensembles
- Post calibration/Bias correction
- Generate PDFs
- Maximum Likelihood Estimates

Challenge: To extract the best forecast and identify the key variables that are influencing the forecast.

This is done by generating joint PDFs from ensemble populations that have a large number of degrees of freedom relative to the ensemble size.

Joint PDFs are constructed statistically, i.e.
- Parametric estimation (e.g. using mean and error covariances)
- Kernel Density Estimation
- Gaussian Mixture Models

New extended range forecast

Testing and Demo
Objective: Extend the Range of Ocean Forecasts in Space (up to global) and in time (up to 30 days) using a stochastic forecast capability

Stochastic parameterization

Localization of Ensemble Trans.

Sources of uncertainty

Run ensembles

Post calibration/ Bias correction

Generate PDFs

New extended range forecast

Maximum Likelihood Estimates

Challenge: To extract the best forecast and identify the key variables that are influencing the forecast.

Done by identifying local and global maxima in the Joint PDFs.

The JPDFS are complex functions (high dimensionality), thus they require the exploitation of robust algorithms to search out these inflection points.

Complex algorithms to be explored include:
- gradient analyses of PDFs
- steepest decent
- genetic algorithms

The maximum likelihood estimate and probability of joint occurrence will be used to extract the maximum likelihood, which will give a more accurate forecast than the any of the ensemble members, the ensemble mean, or the deterministic (control run) mean.

Color = likelihood (0-1)
White = observed mean error
8-Week Ensemble Forecast

Analysis: March 10

SSH (m), A=20130310, F=20130310, 32-Members
0.17 m at 000-m (contour), Ens Mean, Mean (shaded)

Mean (17 cm) SSH

Forecast: May 05

Altimetry: March 10

Realtime Mesoscale Altimetry - 09/10/2013
0.17 m at 000-m (contour), Control, Ens Mean, Std. Dev. (shaded)

Altimetry: May 05

Analysis: March 10

SSH (m), A=20130310, F=20130310, 32-Members
0.17 m at 000-m (contour), Ens Mean, Mean (shaded)

Std. Dev. (17 cm) SSH

Forecast: May 05
8-Week Ensemble Forecast

Analysis: April 21

Mean (17 cm) SSH

Altimetry: April 21

Realtime Mesoscale Altimetry - 04/21/2013

Analysis: April 21

Std. Dev. (17 cm) SSH

Forecast: June 16

Altimetry: June 16

Altimetry: May 6

Realtime Mesoscale Altimetry - 05/06/2013

**Altimetry: June 16???

Realtime Mesoscale Altimetry - 06/??/2013

Forecast: June 16
Thanks!

SUPPLEMENTAL SLIDES
FOLLOW