Danish Meteorological Institute’s activities around Greenland - Operational and hindcast

Till Andreas Soya Rasmussen
Polar Oceanography, Danish Meteorological Institute

Contributions from:
Colleagues at Polar Oceanography and Jacob Weismann Poulsen (it department) at DMI
Flavien Goullion, SHOM
Overview

- Operational setup at DMI
 - Hindcast
 - Current operational setup
 - Plans
- Case studies
 - Nuuk fjord
 - Kangerlussuaq fjord
Motivation

- DMI is responsible for ice charting and forecasting of sea ice around Greenland
- Operational, hindcast and climate studies
- Increasing interest from oil companies, tourism and therefore governmental institutes
HYCOM/CICE Arctic and North Atlantic setup

- ~10 km horizontal resolution
- Sea ice: CICE 4.0
- Ocean: HYCOM 2.2.06
 - 29 vertical levels (hybrid)
 - 8 tidal constituents
- Coupler: ESMF
- Assimilation/nudging
 - sea ice concentration (Daily)
 - SST (Daily)
 - SSS (Climatology)
Operational and Hindcast setup

- **Hindcast**
 - Archive 2000-2009
 - Atmosphere: ERA – Interim
 - 3h temporal resolution
 - 144 processors on a Cray XT5
 - Serves as initialization for the operational setup

- **Forecast**
 - 24h hindcast + 66h forecast
 - Runs twice a day
 - operational since 3/2 -2011
 - Still needs to be matured
 - Atmosphere: HIRLAM K05 (1h) and ECMWF (3h)
 - Previously T15 was used
 - Different handling of sea ice resulted in temperature differences
 - Still issues with boundary of K05 and ECMWF
Sea ice concentration

2001

2007

Units: %
Sea ice concentrations – September 1

Model

Observations

Source (observations): U. of Illinois
The Cryosphere Today

Units: %
Modeled ice volume

- Comparison with Piomas (Polar science center University of Washington)
- Generally lower ice volume.
- Tendency of larger decrease in spring
Sea ice concentration Greenland
24/2 -2011

Model (operational) OSISAF Ice charts
IST measured near Qaanaaq

- Near coastal area
- An area where the physics are not well resolved
- Large daily variations
- Reduction of sea ice
- Not present at time of measurements
- Needs to be considered when using IST from satellite with temporal resolution

Jacob Højer and Steffen Olsen, DMI
Summary Arctic North Atlantic setup

- Hindcast represents ice cover reasonably well.
 - Modeled annual variation of ice cover is slightly larger than the observed
 - However this is also nudged towards the remote sensed cover
- Differences between ice charts, OSISAF and modeled ice concentration
- Sea ice volume is reduced too much in spring
- Operational Arctic/North Atlantic model runs but it is being upgraded
Plans for the operational ocean/sea ice model

- **Goal of upgrade:**
 - Improved forecasting skill
- Atmospheric forcing reduced to one source as ECMWF allows 1h temporal resolution
- New versions of HYCOM, ESMF and with time CICE
- New high resolution areas around Greenland
- Road to achieve goal:
 - Test with different compilers and flags (currently pgi, pathscale, cray and gfortran)
 - Update HYCOM to FORTRAN 90 free format (secondary)
 - Search for warm summer bias
 - Improve assimilation schemes. Possibly include the Canadian ice charting RIPS system
Model Setup Nuuk

- Atlantic/Arctic Ocean 10 km hydrodynamic model (HYCOM-CICE) run for 2000 – present
- Godthaabfjorden / Fylla Bank ~0.3–3 km nesting.
- 16 vertical hybrid layers depending on the simulated vertical stratification.
- DMI-HIRLAM 5 km atmospheric forcing
- Aug. 2004 – May 2010
- Climatological fresh water discharge.
- Additional scenarios applies 2x and 4x discharge (not presented here).

Mads Ribergaard, DMI
Heat balance

Blue: Accumulated heat release from sea surface inside the fjord

Cyan: Accumulated heat transport into the fjord across the main sill

Winter: High ocean heat advection into the fjord.

Large interannual variations mainly set by the hydrographic conditions on the shelf.
Kanqerlussuaq fjord – tidal model using HYCOM-SHOM

Quick setup
Danish Geodata Agency needed to know the lowest depth
Water level measurement from outer fjord used as boundary conditions
 – Assumed constant along boundary
HYCOM-SHOM does not need specified velocities on boundary
Simulated from 1/6 -1/9 2011 (3-7) and 2012 (1-2)
Ice free
Resolution 250m
T_tide (MATLAB) used to extract amplitude and phase from time series
All amplitudes larger than 5cm are used
Kanqerlussuaq fjord – tidal model using HYCOM-SHOM 2011

Entrance to the fjord

Bottom of the fjord
Thank you for your attention

Questions?