Combining HYCOM, AXBTs and Polynomial Chaos Methods to Estimate Wind Drag Parameters during Typhoon Fanapi

Mohamed Iskandarani Ashwanth Srinivasan Carlisle Thacker
Chia-Ying Lee Shuyi Chen,
University of Miami
Omar Knio Alen Alexandrian Justin Winokur Ihab Sraj,
Duke University

Funding: Office of Naval Research
Gulf of Mexico Research Initiative

May 20, 2013
Outline

The Problem
Drag Parameterization
Bayesian formulation of inverse problem

The Tools
Polynomial Chaos

The results
PC Analysis
The inference posteriors
Variational Solution

Conclusions
\[\vec{\tau} = \rho_a C_D \vec{V} \vec{V} \]
\[C_D = C_{D0} + C_{D1} (T_s - T_a) \]
\[C_{D0} = a_0 + a_1 \tilde{V} + a_2 \tilde{V}^2 \]
\[C_{D1} = b_0 + b_1 \tilde{V} + b_2 \tilde{V}^2 \]
\[\tilde{V} = \max \left[V_{\text{min}}, \min (V_{\text{max}}, V) \right] \]

\(C_D \) is drag coefficient
\(V \) is wind speed at 10 m.
\(C_D \) saturates for \(V > V_{\text{max}} \)

- Blue circles: aircraft observations (French et al., 2007),
- red: wind tunnel (Donelan et al., 2004),
- green: drop sondes (Powell et al., 2003),
- magenta: HYCOM fit to COARE 2.5,
- Problem: \(V_{\text{max}} \) and \(C_{D_{\text{max}}} \) are not well-known and does \(C_D \) decrease for \(V > V_{\text{max}} \) as drop sondes suggest?
Inverse Modeling Problem

- Perturb C_D by introducing 3 control variables (α, V_{max}, m)

 \[C_D' = \alpha C_D \text{ for } V < V_{\text{max}} \]
 \[C_D' = \alpha [C_D + m(V - V_{\text{max}})] \text{ for } V > V_{\text{max}} \]

- multiplicative factor $0.4 \leq \alpha \leq 1.1$
- vary V_{max} between 20 and 35 m/s
- m is a linear slope modeling decrease for $V > V_{\text{max}}$ with $-3.8 \times 10^{-5} \leq m \leq 0$
- Use ITOP data to learn about likely distribution of α, V_{max} and m.
Bayes Theorem: $p(\theta \mid T) \propto p(T \mid \theta) \ p(\theta)$

- Likelihood: $\epsilon = T - M$ is normally distributed

\[
p(T \mid \theta) = \prod_{i=1}^{N} \frac{1}{\sqrt{2\pi \sigma^2}} \exp \left(-\frac{(T_i - M_i)^2}{2\sigma^2} \right) \tag{3}\]
Bayes Theorem: \(p(\theta \mid T) \propto p(T \mid \theta) \, p(\theta) \)

- Likelihood: \(\epsilon = T - M \) is normally distributed

\[
p(T \mid \theta) = \prod_{i=1}^{N} \frac{1}{\sqrt{2\pi\sigma^2}} \exp \left(-\frac{(T_i - M_i)^2}{2\sigma^2} \right)
\]

(3)

- \(\sigma^2 \) unknown, treated as hyper-parameter. Assume a Jeffreys prior

\[
p(\sigma^2) = \begin{cases}
 \frac{1}{\sigma^2} & \text{for } \sigma^2 > 0, \\
 0 & \text{otherwise}.
\end{cases}
\]

(4)
Bayes Theorem: \(p(\theta \mid T) \propto p(T \mid \theta) p(\theta) \)

- Likelihood: \(\epsilon = T - M \) is normally distributed
 \[
p(T \mid \theta) = \prod_{i=1}^{N} \frac{1}{\sqrt{2\pi \sigma^2}} \exp\left(\frac{-(T_i - M_i)^2}{2\sigma^2}\right)
 \]
 (3)

- \(\sigma^2 \) unknown, treated as hyper-parameter. Assume a Jeffreys prior
 \[
p(\sigma^2) = \begin{cases} \frac{1}{\sigma^2} & \text{for } \sigma^2 > 0, \\ 0 & \text{otherwise.} \end{cases}
 \]
 (4)

- Uninformed priors for \(\alpha \), \(V_{\text{max}} \) and \(m \):
 \[
p(\{\alpha, V_{\text{max}}, m}\}) = \begin{cases} \frac{1}{b_i-a_i} & \text{for } a_i \leq \{\alpha, V_{\text{max}}, m}\} \leq b_i, \\ 0 & \text{otherwise}, \end{cases}
 \]
 (5)

where \([a_i, b_i]\) denote the parameter ranges.
Final Form of Bayes theorem

\[p(\{\alpha, V_{\text{max}}, m\}, \sigma^2 | T) \propto \prod_{i=1}^{N} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(\frac{-(T_i - M_i)^2}{2\sigma^2}\right) \left[p(\sigma^2) p(\alpha) p(V_{\text{max}}) p(m) \right] \]
Final Form of Bayes theorem

\[p(\{\alpha, V_{\text{max}}, m\}, \sigma^2 | T) \propto \left[\prod_{i=1}^{N} \frac{1}{\sqrt{2\pi \sigma^2}} \exp \left(-\frac{(T_i - M_i)^2}{2\sigma^2} \right) \right] \]

\[p(\sigma^2) p(\alpha) p(V_{\text{max}}) p(m) \]

- Build full posterior with Markov Chain Monte Carlo (MCMC)
 MCMC requires \(O(10^5) \) estimates of \(M_i \): prohibitive
Final Form of Bayes theorem

\[p(\{\alpha, V_{\text{max}}, m\}, \sigma^2 | \mathbf{T}) \propto \prod_{i=1}^{N} \frac{1}{\sqrt{2\pi\sigma^2}} \exp \left(-\frac{(T_i - M_i)^2}{2\sigma^2} \right) \]

\[p(\sigma^2) p(\alpha) p(V_{\text{max}}) p(m) \]

- Build full posterior with Markov Chain Monte Carlo (MCMC)
 MCMC requires \(O(10^5) \) estimates of \(M_i \): prohibitive
- Solve for center and spread of posterior
 minimization problem requiring access to cost function gradient and Hessian: Needs an adjoint model
Final Form of Bayes theorem

\[p(\{\alpha, V_{\text{max}}, m\}, \sigma^2 | T) \propto \left[\prod_{i=1}^{N} \frac{1}{\sqrt{2\pi\sigma^2}} \exp \left(-\frac{(T_i - M_i)^2}{2\sigma^2} \right) \right] \]

\[p(\sigma^2) p(\alpha) p(V_{\text{max}}) p(m) \]

- Build full posterior with Markov Chain Monte Carlo (MCMC)
 MCMC requires \(O(10^5) \) estimates of \(M_i \): prohibitive
- Solve for center and spread of posterior minimization problem requiring access to cost function gradient and Hessian: Needs an adjoint model
- Rely on Polynomial Chaos expansions to replace HYCOM by a polynomial series that could be either summed for MCMC or differentiated for the gradients.
What is Polynomial Chaos

- Series Representation of Model Output

\[M(x, t, \theta) = \sum_{k=0}^{P} M_k(x, t) \psi_k(\theta) \]

- \(M(x, t, \theta) \): a model output (aka observable)
- \(M_k(x, t) \): series coefficients
- \(\psi_k(\theta) \): orthogonal basis functions w.r.t. \(p(\theta) \)
- mean: \(E[M] = \langle M, \psi_0 \rangle = \sum_{k=0}^{P} M_k(x, t) \langle \psi_k, \psi_0 \rangle = M_0(x, t) \)
- Variance: \(E \left[(M - E[M])^2 \right] = \sum_{k=1}^{P} M_k^2(x, t) \)

- Basic Questions
 - How to choose \(\psi_k \)? Legendre polynomials
 - How to determine the coefficients \(M_k \)? Projection
 - Where to truncate the series, \(P \)? Monitor Variance
How do we determine PC coefficients

• Series: \(M(x, t, \theta) = \sum_{k=0}^{P} M_k(x, t) \psi_k(\theta) \)

• Projection:

\[M_k(x, t) = \langle M, \psi_k \rangle = \int M(x, t, \theta) \psi_k(\theta) \rho(\theta) \, d\theta \]

• Approximate integral with numerical Quadrature

\[M_k(x, t) \approx \sum_{q=1}^{Q} M(x, t, \theta_q) \psi_k(\theta_q) \omega_q \]

• \(\theta_q/\omega_q \) quadrature points/weights

• Quadrature requires an ensemble run at \(\theta_q \)

• Here we Used Adaptive quadrature requiring 6-iteration levels for a total of 67 realizations
Figure: Fanapi’s JTWC track (black curve) and paths of C-130 flights. The yellow circles on the track represent the typhoon center at 00:00 UTC. The circles on the flight paths mark the 119 AXBT drops. The 42×42 km2 analysis box is also shown.
Figure: Comparison of HYCOM vertical temperature profiles with AXBT observations on Sep 14 (left), 15 (center) and 17 (right). Temperature averages over the first 50 m are shown in the legend.
PC Representation Errors

Evolution of the area-averaged SST realizations (blue) and of the corresponding PC estimates (red). The normalized rms error (right panel) remains below 0.1% for the duration of the simulation.
Figure: Normalized error between realizations and the corresponding PC surrogates at different depths; Top row: 00:00 UTC Sep 15; bottom row: 00:00 UTC Sep 18.
Depth Profile of Temperature Statistics

50m-deep mixed layer
2°C cooling after Fanapi arrives
Uncertainties confined to top 50 m.
SST Response Surface

Figure: SST response surface as function of α and V_{max}, with fixed $m = 0$. Plots are generated on different days, as indicated. SST's dependence on V_{max} decreases after 09/17.
Markov Chain Monte Carlo

Figure: Top row: chain samples for V_{max}, m and α. Bottom row: chain samples for σ^2 generated for different days, as indicated.
Figure: Posterior distributions for the drag parameters (top) and the variance between simulations and observations (bottom). The numbers show the Kullback-Liebler divergence quantifying the distance between 2 prior and posterior pdfs, i.e. the information gain.
Remarks on posteriors

• V_{max} exhibits a well-defined peak at 34 m/s.
• Posterior of m resembles prior. Data added little to our knowledge of m.
• α shows a definite peak at 1.03 with a Gaussian like-distribution.
• $\sqrt{\sigma^2}$ is a measure of the temperature error expected. This error grows with time from about 0.75$^{\circ}$ to 1$^{\circ}$C.
Figure: Left: joint posterior distribution of α (left) and V_{max}; right: joint posterior of α and σ^2, generated for Sep 17-Sep 18. Single peak located at $V_{\text{max}} = 34 \text{ m/s}$ and $\alpha = 1.03$. The posterior shows a tight estimate for α with little spread around it.
Figure: Optimal wind drag coefficient C_D using MAP estimate of the three drag parameters. The symbols refer to AXBT data used in the Bayesian inference.
Variational Form

- maximize the posterior density, or equivalently, minimize the negative of its logarithm

\[J(\alpha, V_{\text{max}}, m, \sigma_1^2, \sigma_2^2, \sigma_3^2, \sigma_4^2, \sigma_5^2) = \sum_{d=1}^{5} \left[J_d + \left(\frac{n_d}{2} + 1 \right) \ln(\sigma_d^2) \right], \quad (7) \]

where \(J_d \) is the misfit cost for day \(d \), the \(\ln(\sigma_d^2) \) terms come from the normalization factors of the Gaussian likelihood functions and from the Jeffreys priors.

- The expression for \(J_d \) is:

\[J_d(\alpha, V_{\text{max}}, m, \sigma_d^2) = \frac{1}{2\sigma_d^2} \sum_{i \in I_d} [M_i - T_i]^2, \quad (8) \]

where \(I_d \) is the set of \(n_d \) indices of the observations from day \(d \).
Adjoint-Free Gradients

Minimization requires cost function gradients

\[
\left[\frac{\partial J}{\partial \alpha}, \frac{\partial J}{\partial V_{\text{max}}}, \frac{\partial J}{\partial m} \right] = \sum_{d=1}^{5} \frac{1}{\sigma_d^2} \left(\sum_{i \in \mathcal{I}_d} (M_i - T_i) \left[\frac{\partial M_i}{\partial \alpha}, \frac{\partial M_i}{\partial V_{\text{max}}}, \frac{\partial M_i}{\partial m} \right] \right)
\]

Compute them from PC expansion

\[
\left[\frac{\partial M}{\partial \alpha}, \frac{\partial M}{\partial V_{\text{max}}}, \frac{\partial M}{\partial m} \right] = \sum_{k=0}^{P} \hat{M}_k(x, t) \left[\frac{\partial \psi_k}{\partial \alpha}, \frac{\partial \psi_k}{\partial V_{\text{max}}}, \frac{\partial \psi_k}{\partial m} \right].
\]

- \(\frac{\partial \psi_k}{\partial \alpha} \) easy to compute
- No adjoint model needed
- For Hessian just differentiate above again.
Figure: Posterior probability distributions for (top) drag parameters and (bottom) variances σ_d^2 at selected days using variational method and MCMC. The vertical lines correspond to the MAP values from MCMC and optimal parameters found using the variational method.
Conclusions & Future Work

- Identified drag parameters from ITOP observations during typhoon Fanapi.
- PC instrumental to make calculations tractable either through MCMC or through adjoint-free minimization
- $V_{\text{max}} \approx 34 \text{ m/s}$
- Data uninformative regarding decrease in C_D
- C_D^{max} peaking around 2.3×10^{-3}
- Surface temperature measurements more valuable than ones at depths $> 75 \text{ m}$.
- Inference of V_{max} and m hampered by lack of observation at wind speeds $> 35 \text{ m/s}$.
- Future: Hurricane Model & other air-sea exchange coefficients
Publications

Bibliography

