## Tidal and Storm Surge Modeling

**The HOMONIM project** 



### Flav Gouillon, A. Pasquet, R. Baraille, S. Correard, D. Jourdan





### **Storm surges in France**

Champ de pression (hPa), le 28-02-10, 00h





- Operational tidal and storm surge modeling system in the Atlantic and Mediterranean Sea
- The French ministry for ecology, sustainable development and territory planning with its department for the prevention of risks needs:
  - To better anticipate marine environmental risks
  - To improve the understanding of the processes involve in storm surge phenomenon
  - An operational system to predict extreme events
- The main objectives are to better understand/characterized and to improve the prediction of those events
- The project has started in June 2012 and will last until 2015
- The SHOM 'competes' against EDF/LNHE (Telemac2D)



### **1**<sup>st</sup> **Objective**: Better understand and characterized events

- Knowledge of past extreme events via historical water level analysis (statistical and numerical)
- Exploit and consolidate the existing observational network





### **2<sup>nd</sup> Objective:** Improve storm surge modeling/prediction

- Adapt or develop existing models of ATL and MED into operational predicting system
- Modeling of the sea state
- Modeling a 2D/3D ocean





### **1. Accurate temporal and spatial representation of storm** surge processes

- validate the tide (storm surge interactions, OB forcing, model resolution at the coast, bottom friction)
- Wind stress (sea state added or not)
- Added value of 3D configuration

### **2. Evaluate performance of the different configurations**

- Methodology to validate the tide that allows for sensivity studies
- Météo-France protocole of validation to intercompare the models
  - 1 year tidal run validation
  - 1 year full model validation
  - 11 short storm events (10 days)
  - statistical scores on 18 tidal gauges for ATL, 10 for MED
  - computational cost



## **2D Modeling -** how to reach the objectives ?

## **1. Accurate temporal and spatial representation of storm surge processes**

- spatial/temporal forcing resolution O(~10cm)
- tide O(10% to 50% of surge)
- sea state O(10% to 20% of surge)



Locations where interactions between tides and storm surge are negligible



### **2D Modeling -** how to reach the objectives ?



Model Tidal forcing Prediction Error due to tidal forcing (accuracy, number of tidal constituents)

Error due to the model configuration (resolution, friction,...)

Tools to evaluate and quantify those errors



- SHOM Harmonic analysis and predicting tool: MAS
- 500 tidal gauges available (RONIM)
- re-create time series at specific points with N tidal constituents

Method to validate and intercompare sensitivity runs





## **2D Modeling - Atlantic (ATL)**

#### **HYCOM configuration**

- LEGOS Bathymetry
- Arpege/Aladin atmospheric forcing

#### **Sensitivity tests**

- 1- TIDE
  - tidal forcing (LEGOS vs. TOPEX)
  - model resolution (5km, 2km, curvi)
  - bottom friciton
  - open boundary (SSH, U, V)
  - local tidal potential
- **2- STORM SURGE** 
  - wind stress parameterization



## 2D Modeling - ATL - TIDE

### **Results on uniform grids**



### Add resolution the coast? Need to adjust the bottom friction?



(a) EQM en amplitude (cm)





### **Adding model resolution**

- matlab interface to generate orthogonal curvilinear grid (using the GRIDGEN software, *Sakov* 2009)





### Sensitivity to model resolution

- matlab interface to generate orthogonal curvilinear grid
- Tools to make generalized mercator grid (2 poles)

Two poles configuration : from hundred meters to kilometers





## **2D Modeling - ATL - TIDE**

### **Sensitivity to bottom friction**

- need for a spatial variable friction coefficient

- from bottom rugosity (sedimentology profile), amplitude and phase difference, and model numerical dissipation





### **2D Modeling - ATL - TIDE**

### **Results of 2 poles grid vs. uniform grid**

## Phases are better with high resolution

Important sensitivity to bottom friciton and time step (model dissipation)

| Score                 | MF   | 5km  | 2 poles |
|-----------------------|------|------|---------|
| Error<br>Amp<br>(cm)  | 25.8 | 14.3 | 10.8    |
| Error<br>Pha<br>(min) | 25.2 | 18.3 | 16.9    |

We retain the 2 pole configuration







## **2D Modeling - ATL - SURGE**

### What wind stress parameterization?

- Cst: not enough energy
- Wu:improve results of the actual Meteo-France model by 1 to 5cm only
- Charnock Cst/Variable: results were ok but problem with wave data

- *Makin*: reduce the wind stress if wind are too strong, results are good but preliminary





#### **Global scores with Wu parameterization**

| Configuration | Amp Bias | Stand Dev | Err max | Err at peak | Phase Err |
|---------------|----------|-----------|---------|-------------|-----------|
| MF            | -8.3     | 17.8      | 36.6    | -15.6       | -8.2      |
| 5km           | -7.9     | 17.1      | 35.4    | -16.2       | -5.8      |
| 2poles        | -8.4     | 17.1      | 35.8    | -15.8       | -4.5      |

#### **Computational aspects**

|                      |                      |      |        |        |             |        |        |   |    |          | ~ <u>.</u> |    |   |   |    |     |   |   |         |         |   |
|----------------------|----------------------|------|--------|--------|-------------|--------|--------|---|----|----------|------------|----|---|---|----|-----|---|---|---------|---------|---|
| # of Procs           | 1                    | 8    | 15     | 32     | 63          | 128    | 256    |   |    | 5        |            |    |   |   |    |     | ~ | 5 |         |         |   |
| partitioning         | 1x1                  | 6x2  | 12x2   | 8x7    | 16x7        | 22x11  | 18x27  |   |    |          |            |    |   |   | 2  |     | 2 |   | 2       |         |   |
| Cost per iteration   | 1.1                  | 0.35 | 0.23   | 0.093  | 0.04        | 0.023  | 0.018  |   | V  |          |            |    |   |   |    | 38. |   |   |         |         | N |
| Theoretical speed up | 1                    | 5.67 | 10.94  | 24.33  | 48.66       | 104.14 | 210.57 |   |    | <u>ت</u> |            |    |   |   |    |     |   |   | ifti en | an alle | 1 |
| Measured speed up    | 1                    | 3.14 | 4.78   | 11.82  | 27.5        | 47.8   | 61.1   | 2 |    |          |            |    |   | • | 51 |     |   |   | 1       | 2       |   |
| Performance ratio    | 1                    | 0.56 | 0.43   | 0.48   | <b>0.56</b> | 0.46   | 0.29   |   | 30 |          |            | ·F |   |   |    | 3   |   |   | Z       |         |   |
| Launcher             | mpirun<br>ou<br>srun | srun | mpirun | mpirun | mpirun      | srun   | srun   |   |    |          |            |    | 7 |   |    |     |   |   |         |         |   |
|                      |                      |      |        |        |             |        |        |   |    |          |            |    |   |   |    |     |   |   |         |         |   |



### **Conclusion for the ATL domain**

 Development of a simple and efficient curvilinear orthogonal grid generator

#### TIDE

- new methodology of validation
- good results compare to obs

### **STORM SURGE**

- Implementation of new wind stress parameterization
- Results are in good agreement with observations



# **2D Modeling - Mediterranean (MED)**

#### **Difficult grid choice: different objectives and different processes**





In order to get the 'optimal' configuration: sensitivity tests on :

- Model horizontal resolution (2 poles)
- Bottom friction (variable)
- Tidal forcing (LEGOS)
- Open boundary forcing (SSH only)
- Number of tidal constituents (10)



## The role of steric effect in the MED Validation with the MAS tool



— Model

Obs with 143 tidal constituents Obs with 8 tidal constituents



## 2D Modeling - MED - SURGE



Weak impact of the resolution ? Run with 2 poles are being done to confirm...

How to explain this bias that occurs only for the 2010 storm ?





#### Conclusion

- Tidal amplitudes and phases compare well to observation
- Steric effect important and needs to be removed
- Important effect of model resolution from preliminary results of the 2 poles configuration...
- ... but increases sensitivity to bottom friction
- Same bias as in the ATL for the 2010 storm

Storm surge (0m to 0.4m) - 02/2010





- New methodology to validate the tides
- Simple graphic interface to generate curvilinear/uniform grids
- Variable bottom friction from sedimentology profile
- New wind stress parameterization
- Hycom tides and sea level during storm surge compare well to obs
- Results of ATL delivered to METEO-FRANCE last week
- Results of MED must be handed in a month
- Bias for the event of 2010 non-resolved as of now



#### Porcessus expliquant le biais ?

Processus 2D :





Processus 2D :

- Pression Atmosphérique
- Tension de vent
- Initialisation
- Effets non linéaires
- Wave set-up







### Non linear effect of tides (run with no tides)

Processus 2D :

- Pression Atmosphérique
- Tension de vent
- Initialisation
- Effets non linéaires
- Wave set-up

Patm

- Patm + tension vent
- Observations
- \_\_\_\_ MF
- \_\_\_\_ Effets non linéaires



solution but still some mass missing in the system...

#### link to the strong negative NAO index at that time?