

Global distribution of diurnal and semi-diurnal Parametric Subharmonic Instability in a Global Ocean Circulation Model

Joseph K. Ansong

Collaborators: Brian K. Arbic, Harper L. Simmons

Matthew H. Alford, Patrick G. Timko, E. Joseph Metzger, Jay F. Shriver, James

G. Richman, Alan J. Wallcraft

Department of Earth & Environmental Sciences University of Michigan

Outline

- Motivation
- Results
 - PSI (Parametric Subharmonic Instability) of the Diurnal & Semi-Diurnal Tides
 - Estimates of fraction of power in subharmonics
 - Rates of energy transfer

Motivation

What's the fate of mode 1 waves that radiate away?

Mode 1 Waves \longrightarrow Blac Box \longrightarrow Dissipation

- break on continental shelfs; other topography
- PSI (Parametric Subharmonic Instability) is a culprit: $\omega_0 \rightarrow \omega_1 + \omega_2, \quad \omega_1, \, \omega_2 \approx \omega_0/2$

$(\omega_1, \omega_2) \rightarrow \text{small vertical scales} \implies \text{mixing}$

MacKinnon & Winters (2005), Hibiya et al.(1998, 2002), MacKinnon et al. (2011, 2012), Furuichi et al.(2005), Alford(2008), Hazewinkel & Winters (2011), Simmons(2008), Sun (2010), Sun & Pinkel (2013)

Simmons (2008) simulations observed PSI in a $1/8^{\circ}$ global model with 16 layers:

- (1) Only M_2 tides (2) No wind forcing
- (3) Horizontally-uniform stratification

Simmons (2008) Low-passed signal PSI around ... Critical Latitudes

Fig. 3. Geographic distribution of upper ocean baroclinic velocity variance [var(u') + var(v')] averaged over days 160–170. The upper panel shows the time-averaged total variance ("Full"). The bottom panel shows frequencies lower than M_2 ("LP"). The SHTL is indicated by the dashed lines along $\pm 28.8^{\circ}$ in the bottom panel.

HYCOM simulations with

(Arbic *et al.* 2010, 2012; Richman *et al.* 2012; Shriver *et al.* 2012; Timko *et al.* 2012)

- The 8 major diurnal/semi-diurnal constituents
- Wind forcing (3-hourly from NOGAPS)
- Horizontally-varying stratification

HYCOM grid + Output (experiment 18.5)

- \blacksquare 1/12° model, 32 Vertical layers
- \blacksquare 30 days of 3*D* global output

QUESTIONS:

- How would wind-generated NIWs change results...
- Could the eddies alter PSI behaviors?
- Can we detect PSI of diurnals? (Alford 2008)
- How much energy is in subharmonics

START SIMPLY ...

Initial Results

1/2 Semi-diurnals Layer 14 ($\approx 500m$) Variance: $\log_{10}[var(u') + var(v')]$ Spread around... m²/s² Critical Latitudes Activity around strong... WBC + ACC1/2 Diurnals Layer 14 ($\approx 500m$) Similar story... Other layers?

Bicoherence Results

Comment from Ocean Sciences (Tim Duda): It is possible in some locations to have signals with high bicoherence but the energy in those signals might be small compared to the tide

Interpretation? Back to equations (Kim & Powers, 1979):

$$b = \frac{|B(\omega_1, \omega_2)|}{\{E[|X_{\omega_1}X_{\omega_2}|^2]\}^{1/2} \{E[|X_{\omega_3}|^2]\}^{1/2}}, \quad 0 \le b \le 1$$

Define 'energy ratio', *R*:

$$R = \frac{\{E[|X_{\omega_1}X_{\omega_2}|^2]\}^{1/2}}{\{E[|X_{\omega_1}X_{\omega_2}|^2]\}^{1/2} + \{E[|X_{\omega_3}|^2]\}^{1/2}}$$

Eliminate signals with R < 1% and get...

Bicoherence Results

Depth vs Zonally-averaged bicoherence

Latitude

Semi-Diurnal PSI Variation in depth of zonallyaveraged bicoherence

Only showing $0 - 1000 \,\mathrm{m}$

Intense in upper ocean [Hazewinkel & Winters (2011)]

Highest bicoherences centered... on M_2 Critical Latitude Intensity falls around $\sim 3^{\circ}$.. from CL [Furuichi et al. (2005)]

LOM-2013 - p. 11/35

Depth vs Zonally-averaged bicoherence

MICHIGAN

Depth vs Zonally-averaged bicoherence

HIGAN

Bicoherence: Diurnals

18

18

LOM-2013 - p. 13/35

BIG QUESTION: How much energy is in subharmonics?

BIG CHALLENGE:

How to separate subharmonics & Wind-generated NIO...

INDIRECT APPROACH:

- Invoke 'energy ratio', R, since...
- R discriminates weak/strong 'energy' signals

Fraction of Power in Subharmonics

Bicoherence... Eliminate: R < 1%

Fraction of Power in Subharmonics

Fraction of Power in Subharmonics

80

LOM-2013 – p. 16/35

Rates of Energy Transfer: North

Rates of Energy Transfer: South

Rate of Energy Transfer: South

Most negative transfers occur in the South Pacific.

Subharmonic/Tidal Energy Flux

Vertically-integrated subharmonic energy flux [depth: 0 – 1000 m] Vectors not to scale!!

Baroclinic Semi-diurnal fluxes Sample of vectors plotted

Compare to Simmons (2008)

3. Geographic distribution of upper ocean baroclinic velocity variance [var(u') + var(v')] averaged over days 160–170. The upper panel shows the averaged total variance ("Full"). The bottom panel shows frequencies lower than M_2 ("LP"). The SHTL is indicated by the dashed lines along $\pm 28.8^{\circ}$ e bottom panel.

Summary & Conclusions

Global distribution of PSI in high resolution HYCOM show

- PSI around critial latitude (CL) of tides via bicoherence calculations
- Intense semi-diurnal PSI in upper ocean [Hazewinkel& Winters 2011]
- Intensity falls within 3° of CL [Furuichi et al. (2005)]
- Estimates of fraction of energy in subharmonics O(8 23%)[consistent with IWAP estimates around Hawai'i: O(10 - 20%)]
- Positive rates of energy transfer in Northern Hemisphere...

THANK YOU

LOM-2013 – p. 23/35

Extra stuff Extra stuff Extra stuff

LOM-2013 – p. 24/35

Rate of Energy Transfer

Employ recent formulas (MacKinnon et. al. 2012, Sun & Pinkel, 2013).

Example: $(u_1, u_2) \rightarrow$ daughter waves, $u_3 \rightarrow$ tide.

$$E_{t} = \frac{3}{2}ik\hat{u}_{1}\hat{u}_{2}\hat{u}_{3}^{*} + c.c.$$
$$E[E_{t}] = \frac{3}{2}ikB(\omega_{1}, \omega_{2}) + c.c.$$

k = horizontal wavenumber.

 $E_t > 0 \Longrightarrow$ Transfer from tides \rightarrow subharmonics $E_t < 0 \Longrightarrow$ Transfer from tides \leftarrow subharmonics

Rate of Energy Transfer

Energy Flux Comparison

M₂ Energy fluxes (HYCOM) IWAP observations (blue circles)

Energy Flux Comparison

M₂ Energy fluxes (HYCOM) IWAP observations (blue circles)

Bispectrum Approach

x(t) = zero-mean signal $X(\omega) =$ complex Fourier transform of x(t)

Bispectrum (Kim & Powers, 1979)

$$B(\omega_1, \omega_2) = E[X(\omega_1)X(\omega_2)X^*_{\omega_1+\omega_2}]$$

Implications: $B(\omega_1, \omega_1) = 0$ unless

Quantitative measure is bicoherence:

$$b^{2}(k,l) = \frac{|B(\omega_{1},\omega_{2})|^{2}}{E[|X_{\omega_{1}}X_{\omega_{2}}|^{2}]E[|X_{\omega_{1}+\omega_{2}}|^{2}]}$$

with $0 \leq b(\omega_1, \omega_2) \leq 1$.

Significance levels of b (Elgar & Guza, 1988):

$$95\% \equiv \sqrt{6/n_{dof}}; \ 99\% \equiv \sqrt{9/n_{dof}}$$

where n_{dof} = number of degrees of freedom (tricky issue, Carter & Gregg 2006, Sun & Pinkel 2010, MacKinnon et al. 2011)

Illustrative Example

$$y = \cos(2\pi f_1 t + \phi_1) + \cos(2\pi f_2 t + \phi_2) + \cos(2\pi f_3 t + \phi_3) + \cos(2\pi f_4 t + \phi_4)$$

$$f_1 + f_2 = f_3$$

$$\phi_1 + \phi_2 = \phi_3$$

$$f_1 = 0.2, f_2 = 0.1, f_4 = 0.4$$

Kim & Powers (1979) show that:

$$b^{2}(\omega_{1},\omega_{2})E[|X_{\omega_{3}}|^{2}] = |A_{1,2}|^{2}E[|X_{\omega_{1}}X_{\omega_{2}}|^{2}]\cdots(1)$$

represents the power at ω_3 due to the coupling at ω_1 and ω_2 where $A_{1,2}$ is the interaction coefficient:

$$X_{\omega_3} = A_{1,2} X_{\omega_1} X_{\omega_2}, \quad A_{1,2} = B^*(\omega_1, \omega_2) / E[|X_{\omega_1} X_{\omega_2}|^2]$$

Take square root of (1) and get

$$R = \frac{b}{b + |A_{1,2}|}$$

Similar cleaner global maps may be obtained by plotting $A_i = 1/|A_{1,2}|$

Bicoherence vs Interaction Coefficient

$$b(\omega_1,\omega_2)$$

Eliminate: R < 1%

 $A_i = 1/|A_{1,2}|$ Eliminate: $A_i < 1.4 \%$

First 4 modes explain.... 95 % of variance

Spatial modal structures

Stratification vs Bicoherence

4

x 10⁻⁵

3