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Outline of talk

Part |I-Motivation (research led by Brian Arbic)
e Frequency-wavenumber analysis:
—Idealized Quasi-geostrophic (QG) turbulence model.
—High-resolution ocean general circulation model (HYCOM)*.
—AVISO gridded satellite altimeter data.
*We used NLOM in Arbic et al. (2012)

Part 1I-Research led by Andrew Morten
e Derivation and interpretation of spectral transfers used above.

e Frequency-domain analysis in two-dimensional turbulence.

e Theoretical prediction for frequency spectra and spectral
transfers due to the effects of “sweeping.”
—moving beyond a zeroth order approximation.
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Motivation: Intrinsic oceanic variability

e Interested in quantifying the contributions of intrinsic
nonlinearities in oceanic dynamics to oceanic frequency spectra.

e Penduff et al. 2011: Interannual SSH variance in ocean models
with interannual atmospheric forcing

is comparable to

variance in high resolution (eddying) ocean models with no
interannual atmospheric forcing.

e Might this eddy-driven low-frequency variability be connected to
the well-known inverse cascade to low wavenumbers (e.g. Fjortoft
1953)7

e A separate motivation is simply that transfers in mixed w — k
space provide a useful diagnostic.
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Oceanic analysis regions

e Regions used to analyze AVISO gridded altimeter data and
HYCOM output.

e Shown against snapshots of SSH (cm) from HYCOM and SSH
anomaly (cm) from AVISO.
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Frequency spectra of surface streamfunction variance 1

and kinetic energy |V1/1|? (Arbic et al. 2012 JPO)
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Flat spectra at low
frequencies as in
previous studies
(e.g. Richman et
al. 1977, Wunsch
2009, 2010)
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Spectral transfers of upper layer kinetic energy versus

wavenumber at fixed frequency

Spectral transfers vs. k
QG model Agulhas HYCOM and AVISO
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Spectral transfers of upper layer kinetic energy versus

frequency at fixed wavenumber

Spectral transfers vs. w
Highlat SE Pac HYCOM & AVISO
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Derivation of spatial transfers

e Reminder of derivation of energy and enstrophy spatial transfers
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Time-frequency analysis needed for temporal transfers

Choose either:

e Short-time (moving window) Fourier transform:

. T+T/2 —r )
f(r,w; T):= / O'(t MF(t) = frrend(t, 7; T)]e”“tdt (5)

1) T
df . 0.
= E(T,w) = jwf + gf(T,w) (6)
o Wavelet:
F(r,w) = / F(1)|w|Y2W((t — 7)w)dt (7)
df 0
— E(Tﬁ‘u) - Ef‘(TW’J) (8)
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Derivation of temporal transfers

e Derivation of energy and enstrophy temporal transfers
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Model choices

e 2D Navier-Stokes equation (modified)

O 0204 I, V%) = F — 10920+ Diyper + Do (13)
e streamfunction,

e jacobian, J(-,)

e Ekman drag, vg = 0, for this talk.

e exponential wavenumber filter (hyper-)viscosity, Dpyper

. : " filter (hypo-)viscosity, Dpypo

e forcing, F, chosen to be localized about wavenumber kr and
frequency wr.
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Three different forcing frequencies
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Model choices: spectrally localized forcing

In order to allow for statistically homogeneous isotropic
turbulence...

Start with Maltrud-Vallis (stochastic) forcing,

Fav (K, tn) = fo/1 — c2e/® + cFp(tn-1), (14)

Shift the power spectrum peak to wr and —wr

—

F_(k’ tn) = eIWFtnF_I\—i/_IV(Ev tn) + e_intn,:—I\;V(E’ t”) (15)
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Typical 1(X, t) and V21 snapshots; and forcing

Streamfunction snapshot Vorticity snapshot
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Energy Fluxes in k-space (three different forcing periods)

Energy Fluxes (nonlinear term in red) in k-space
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e Clear inertial ranges in k-space.

e Similar results for all three forcing periods.
— slightly more injection of energy for longer forcing periods.
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Enstrophy Fluxes in k-space (three ing periods)

Enstrophy Fluxes (nonlinear term in red) in k-space
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e Clear inertial ranges in k-space.
e Similar results for all three forcing periods.

— slightly more injection of enstrophy for long forcing periods.
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Fluxes in w-space (three forcing periods)

Energy Fluxes (nonlinear term in red) in w-space
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Not really an “inertial range” in w-space.

Direction of “cascade” depends on forcing frequency.

Probably these transfers are determined by sweeping (by vims),
— more complicated than a simple Taylor's hypothesis.
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Why can the spectral transfers proceed in either direction

Local conservation within triads in k-space (Kraichnan 1967)

0= T(k,p,q) + T(p,q, k) + T(q,k, p), (16)
0= KT(k,p,q)+p*T(p,q,k) +a*T(q,k,p),

generalizes to

0= T(k,p, q; wk,wp,wq) + T(p,q, ki wp,wg,wk) + T(), (17)
0= k2 T(ka P, q;wk7wp’wq) + p2 T(p7 q, k;wpaquwk) + q2 T()a

which, by integrating over wavenumbers, gives

0= Qi(wk,wp,wq) + Q1(wp,wq,wk) + Q1(), (18)
0= QZ(wk;wqu) + QZ(wp7wq7wk) + Q2()7

where Q1 and @» are energy and enstrophy transfers, respectively,
within frequency triads.
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Enstrophy Fluxes in w-space (three

Enstrophy Fluxes (nonlinear term in red) in w-space

Enstrophy Fluxes in Frequency Space Enstrophy Fluxes in Frequency Space Enstrophy Fluxes in Frequency Space
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e Not really an “inertial range” in w-space, except for small wr.
e Direction of “cascade” depends on forcing frequency.
e Probably these transfers are determined by sweeping (by Vims),

— more complicated than a simple Taylor's hypothesis.
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Energy Spectra in k-space (three forcing periods)

Energy spectra in k-space
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e Spectral slopes reasonably close to Kraichnan's scaling in
k-space.

e (—5/3 and —3, or more like -4)
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Enstrophy Spectra in k-space (three forcing periods)

Enstrophy spectra in k-space
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e Spectral slopes reasonably close to Kraichnan's scaling in
k-space.
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Taylor's hypothesis and sweeping

An overview of Taylor's hypothesis and sweeping.

e Taylor's hypothesis:
(strong mean flow) + (spatial structure)
= (Eulerian frequency spectra).

e sweeping hypothesis:
(zero mean flow) + (strong large-scale v,ms) + (spatial structure)
—> (Eulerian frequency spectra).
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Taylor's hypothesis and sweeping

e sweeping hypothesis:
(zero mean flow) + (strong large-scale v,ms) + (spatial structure)
— (Eulerian frequency spectra).

— sweeping is typically treated similarly to a strong mean flow,
but with velocity vims. (Tennekes 1975)

— or, as an ensemble of time-independent sweeping velocities.
(Chen et. al. 1989)

— but for a general time-dependent sweeping, one needs to be
careful. (Morten et al., in preparation)
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Energy Spectra in w-space (three forcing periods)

Energy spectra in w-space
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e Taylor's hypothesis and “sweeping” are not quite right; slopes
not equal to those in wavenumber spectrum.

e Slopes at low frequencies near -1; higher frequencies near -2.
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Enstrophy Spectra in w-space (three forcing periods)

Enstrophy spectra in w-space
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e (Naive) Taylor's hypothesis or “sweeping” give incorrectly signed
slope.

e Direct cascade enstrophy spectra give best match (—1 slope).

e (Correct) Taylor's hypothesis or “sweeping” give negative slope

in w-spectra for a positive sloping k-spectra (see next two slides).
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Taylor and Sweeping done right

Summary of some analytical results:

e Taylor done right:
(mean velocity vp) and spectra E(k) o< kP (between kpmin and kmax)
= E(w) = wP, for p< 0
— E(w) ~ w P/ wkna)® ~ (40 for p> 0
—Why? Because in 2D or 3D, vy and k need not be parallel,
so every mode k contributes to arbitrarily low w in E(w).

e sweeping done right:
(zero mean velocity vo = 0) and spectra E(k) o kP (as above)
= E(w) ~ wP + Q%wP=2 4+ O(wP™*), for p < 0,
as an asymptotic series in the limit w — oo, and where

Q depends on vyms, (V/(t) - V'(t)), kmin and kmax,
and note that Q could be quite large.
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e We derived and gave an interpretation for spectral transfers in
the wavenumber-frequency domain.

e We do see a transfer of energy to lower frequencies due to
nonlinearity in some parts of the “ocean” (as measured by AVISO
or modelled by HYCOM or a two-layer QG model).

e In the case of 2D turbulence, the direction of the transfer is
largely determined by the effects of sweeping.

e A more rigorous analysis of a time-dependent sweeping is
needed to understand slopes of frequency spectra, especially when
the cascade is narrow in wavenumber.
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Summary of part |

e Spectral transfers T and fluxes [1 display a tendency for
nonlinearities in idealized geostrophic turbulence models to drive
energy into low frequencies as well as low wavenumbers.

e Low wavenumber energy associated with low frequencies and
vice versa, but not in a simple way.

e Realistic OGCM's also display a general tendency for
nonlinearities to drive energy into lower frequencies, though not as
simply or consistently as QG in turbulence models. AVISO gridded
altimeter data does only in some of the regions examined; possibly
because it is a highly filtered product.
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