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ABSTRACT

The ensemble Kalman filter (EnKF) has proven its efficiency in strongly nonlinear dynamical systems but is

demanding in its computing power requirements, which are typically about the same as those of the four-

dimensional variational data assimilation (4DVAR) systems presently used in several weather forecasting

centers. A simplified version of EnKF, the so-called ensemble optimal interpolation (EnOI), requires only a

small fraction of the computing cost of the EnKF, but makes the crude assumption of no dynamical evolution

of the errors. How do both these two methods compare in realistic settings of a Pacific Ocean forecasting

system where the computational cost is a primary concern? In this paper the two methods are used to as-

similate real altimetry data via a Hybrid Coordinate Ocean Model of the Pacific. The results are validated

against the independent Argo temperature and salinity profiles and show that the EnKF has the advantage in

terms of both temperature and salinity and in all parts of the domain, although not with a very striking

difference.

1. Introduction

A review of sequential data assimilation methods with

respect to the stochastic systems they solve for can be

found in Bertino et al. (2003). The simplest data assim-

ilation method is optimal interpolation (OI) and can be

derived within both variational and sequential frame-

works. OI has the advantage of simplicity of implemen-

tation and low computational cost, and has been applied

to many ocean data assimilation studies (Rienecker and

Miller 1991; Carton et al. 2000; Etienne and Dombrowsky

2003). However, the OI methods are strongly dependent

on an arbitrary choice of background error statistics

(Bouttier and Courtier 1999) and are designed for sta-

tistical systems. The Kalman filter (KF) is a widespread

sequential method for dynamical systems that relies on

assumptions of linearity, of an unbiased model and ob-

servations, and of initial and model error covariances,

instead of the background error covariance matrix. The

extended Kalman filter (EKF) can be used in weakly

nonlinear systems but instabilities have been reported in

stronger nonlinear cases (Evensen 1992).

For high-dimensional systems, handling the error

covariances in the KF and EKF methods is practically

intractable. The ensemble Kalman filter (EnKF) is an

effective data assimilation approach introduced by

Evensen (1994) using an ensemble step for the forward

integration of error statistics and the traditional update

equation of the KF. The EnKF is attractive since it

avoids many of the problems associated with the tradi-

tional EKF such as instabilities and reduces the nu-

merical needs to a reasonable level (Burgers et al. 1998;

Evensen 2003). The EnKF has been employed to assim-

ilate data within a number of different contexts (Evensen

and van Leeuwen 1996; Houtekamer and Mitchell 2001;
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Keppenne and Rienecker 2003), including operational

forecasts at the Canadian Meteorological Office, the

University of Washington, and in the Towards an Op-

erational Prediction System for the North Atlantic

European Coastal Zones (TOPAZ; Bertino and Evensen

2003) system. Leeuwenburgh (2005) has used the EnKF

method to assimilate altimetry data in a twin experiment

for the tropical Pacific, showing the potential capacity to

correct subsurface fields along the equator.

Evensen (2003) proposed an ensemble optimal in-

terpolation (EnOI) method based on a simplification of

the EnKF. It is a simple OI scheme where the analysis is

computed in the space spanned by a stationary ensemble

of model states sampled (e.g., during a long model in-

tegration). Since the error statistics are invariant in time,

EnOI provides a suboptimal solution compared to the

EnKF. On the other hand, the ensemble forecast com-

putation cost of EnKF is N times of that of EnOI if N is

the EnKF ensemble size. Typically, in realistic meteo-

rological and oceanic applications, N is approximately

100. This huge difference between the computational

costs of the EnKF and the EnOI needs to be justified by

the quality of the assimilation results in order to select

the EnKF or EnOI in realistic applications where the

computational cost is a primary concern. So far, there

are very few if any such studies (Oke et al. 2007). The

comparison study is also important because the im-

plementation of model errors is still very simple in cur-

rent applications of the EnKF. In the present application

we consider the atmospheric forcing as the only source

of model errors. The comparison can help to evaluate

this simple implementation of the EnKF and EnOI, then

to suggest future improvements for both methods.

In this paper, we compare 3-yr experiments assimi-

lating altimetry data using the EnKF and the EnOI in

the Pacific. The assimilation results are verified using in-

dependent in situ Argo profiles of temperature and sa-

linity and independent sea surface temperatures (SSTs).

Previous validation of the EnKF with a realistic altimetry

data assimilation experiment against independent obser-

vations can be found for the Atlantic Ocean (Brusdal et al.

2003) as well as the Indian Ocean (Haugen and Evensen

2002). There have been several altimetry assimilation

studies of the Pacific Ocean (Verron et al. 2000; Vossepoel

et al. 1999; Durand et al. 2003; Leeuwenburgh 2005),

but few of them use real in situ observations of tem-

perature and salinity for validation and few experiments

extend over a period longer than a year and outside of

the equatorial band.

Section 2 of this paper introduces the two assimilation

methods. In section 3, the ocean model and data used

in this study are described. Section 4 gives the experi-

mental results and section 5 offers the conclusions.

2. EnKF and EnOI

The EnKF and EnOI algorithms used here are based

on the work of Evensen (2003) and the analysis scheme

from Burgers et al. (1998). They have been used widely

because of their feasibility and efficiency. A brief recall

of the algorithms is given in this section.

a. Notations

We define ensemble members ci 2 <n (i 5 1, � � � , N),

where N is the ensemble size and n is the dimension of

the model state. The model states of the ensemble are

held in an ensemble matrix A:

A 5 (c
1
, c

2
, . . . , c

N
) 2 <n3N . (1)

The ensemble mean is stored in A (A 5 A1N), and its

anomaly matrix is

A9 5 A� A 5 A(I� 1
N

), (2)

where 1N 2 <N3N is the matrix in which each element is

equal to 1/N.

The observations vector is d 2 <m, and their associ-

ated uncertainty is «j. We can simulate N random vectors

of perturbed observations:

d
j
5 d 1 «

j
, j 5 1, . . . , N, (3)

where dj is sampled from a N(d, R) Gaussian distribu-

tion and R is the observation error covariance matrix.

We store the observation uncertainty «j in a matrix g.

Then, the ensemble of innovation vectors is defined as

the matrix

D9 5 D� HA, (4)

where H is the measurement operator that transforms

the model state to the observation space and D 5 (d1,

d2, . . . dN).

b. EnKF

We can write the forward propagation step for any of

the ensemble members as

c
f
k115 g(ca

k) 1 q
k
, (5)

where k is the time step and qk is a random model error

drawn independently for each member from a Gaussian

distribution. The operator g is a nonlinear function rep-

resenting the model integration.

The analysis update equation is given in matrix form:

Aa 5 A 1 P
e
HT(HP

e
HT 1 R)�1(D� HA), (6)

where Pe is the background error covariance matrix.
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Here, the Kalman gain is

K
e
5 P

e
HT(HP

e
HT 1 R)�1. (7)

Equation (6) can be written using only anomalies as

Aa 5 A 1 A9A9THT(HA9A9THT 1 ggT)�1D9. (8)

To compute the denominator efficiently, a singular value

decomposition (SVD) is used to calculate the ensemble

uncertainties and the measurement errors. Different

analysis schemes are detailed in Evensen (2003); we have

chosen the original scheme designated as ‘‘analysis 2.’’

c. Initial ensemble and model errors

The EnKF initial ensemble is generated with random

fields following a spectral method (fast Fourier trans-

form) documented in Evensen (1994, 2003) and with

more details provided in Natvik (2001) and Wan et al.

(2008). At the initial time, we pick a model snapshot

after a spinup integration in free-running mode. We

assume that the inaccuracy in this snapshot can be at-

tributed to a displacement of the vertical coordinates.

We sample the initial ensemble by perturbing the layer

interfaces. An improved sampling scheme based on

a singular value decomposition of an oversized sample

(Evensen 2004) has been used here in order to reduce

the redundancy of information in the initial ensemble.

Then, the initial ensemble is integrated forward for 1

month with model errors introduced through the at-

mospheric forcing fields in order to let the multivariate

correlations build up within the ensemble. The model

errors are constituted with random red noise added to

the atmospheric forcing fields as outlined in Evensen

(2003). The spatial correlation is derived from the given

spatial scale (also called the decorrelation scale) and

typical grid size, while the temporal correlation is formed

by a Markov process with a sequence of time-correlated

pseudorandom fields with means equal to zero and vari-

ances equal to 1. In this study, we take 10 grid cells for the

decorrelation scale, 50 km for the typical grid size, and 3

days for the time correlation scale. Equation (9) gives the

evolution of the model errors:

q
k

c
k

� �
5

bq
k�1

g(c
k�1

) 1
ffiffiffiffiffi
Dt
p

srq
k

 !
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

p
w

k�1

0

 !
,

(9)

where qk is the model error and wk is a white noise

process in time. The factor b represents the correlation

between two time steps. In addition, Dt is the time step, s

is the standard deviation of the model error, and r is

a factor to be determined. (In this study, we use r 5 1.)

Detailed discussion about the parameters used here is

documented in Natvik (2001) and Wan et al. (2006).

d. EnOI

The EnOI analysis is computed in the space spanned

by a stationary ensemble of model states (also noted A),

sampled randomly during a long-time integration that

includes climatological variability. Only one model in-

tegration is required. The computational cost is thus

very small compared to the EnKF.

The analysis equation is similar to Eq. (8), as follows:

ca 5 c 1 aA9A9THT(aHA9A9THT 1 ggT)�1(d�Hc),

(10)

where a2 (0, 1] is the parameter giving different weights

for the forecast and measurement error covariances.

The variance of a stationary ensemble over a long period

usually overestimates the instantaneous variability;

therefore a , 1. The EnOI provides a multivariate

analysis that has properties that are similar to the EnKF

when it comes to the conservation of the dynamical

balance (Evensen 2003). The practical implementation

is also similar to that of the EnKF but the error statistics

do not evolve with time.

3. Model and observations

a. The ocean general circulation model

The Hybrid Coordinate Ocean Model (HYCOM;

Bleck 2002) is an upgraded version of the Miami

Coordinate Ocean Model (MICOM). HYCOM is a

primitive equation, ocean general circulation model with

a vertical coordinate that combines the advantages of

three vertical coordinate systems: it is isopycnic in the

open, stratified ocean and reverts smoothly to Cartesian

coordinates (either z levels or terrain-following levels)

in unstratified or shallow waters. A sophisticated verti-

cal mixing scheme, the K-profile parameterization

(KPP), was included in this study.

The computational domain spans the Pacific Ocean

from 288S–528N to 958E–708W. The standard Mercator

horizontal grid configuration used in earlier HYCOM

studies has been modified with the conformal mapping

tools of Bentsen et al. (1999), and the model grid sizes

range from 42 to 72 km in the Pacific, where the sizes are

large along the tropical and small in the North Pacific.

The vertical direction is split into 22 hybrid layers with

reference densities increasing linearly with 1/3 in the

upper 10 layers and exponentially with power 2 in the 12

bottom layers. Reference densities range from 18.00 to

27.84 and the three-dimensional state variables are wa-

ter temperature, salinity, layer thickness, and velocity.
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The lightest reference densities are used to enforce the

use of z coordinates near the surface.

The high-frequency synoptic forcing fields used were

temperature, wind, and relative humidity determined from

dewpoint temperatures, which were acquired from the

European Centre for Medium-Range Weather Forecasts

(ECMWF) four times each day. Clouds and precipitation

results are based on the climatology of the Comprehensive

Ocean and Atmosphere Data Set (COADS) and on

Legates and Willmott (1990). At its surface and along

the lateral boundaries, the model temperature and sa-

linity are relaxed toward the Generalized Digital Envi-

ronmental Model (GDEM) climatology (Teague et al.

1990), with a common relaxation time scale of 100 days

and over 15 grid cells near the lateral boundary.

b. Experiment design

The state variables that are integrated into the as-

similation experiments are all the model prognostic

variables: temperature, salinity, current velocity, and

layer thickness in the water column, plus the barotropic

pressures and velocities. The EnKF initial ensemble is

generated following Wan et al. (2008); 100 ensemble

members were used, as in Lisæter et al. (2003). The

EnOI statistical ensemble is randomly selected from

a model run of 20 yr and the size is the same as for

EnKF. Table 1 summarizes the parameterization of the

initial error, the model errors, and the observation er-

rors. After a 1-month spinup of the initial ensemble,

both EnOI and EnKF are run from 1 January 2002 to

31 December 2004. The schematic flowchart of the two

experiments is shown in Fig. 1.

A local analysis is used in both experiments to cut off

possible long-range covariances and to avoid the prob-

lems associated with a large number of the observations.

Each grid cell is updated by the M nearest observations

within the influence radius r0. In the EnOI experiment,

the weighting parameter a is taken as 0.45, which is ob-

tained from other sensitive experiments.

We simulate the model errors affecting the evolution of

the ensemble members by pseudo-random fields added to

the ECMWF atmospheric forcing. The sensitivity to these

errors has been evaluated in Wan (2006) and the most

adequate parameter set has been used here; see Table 1.

c. The observations

Observational data assimilated in the experiments

include sea surface height anomaly (SSHA) satellite

maps merged from different missions: the Ocean To-

pography Experiment (TOPEX)/Poseidon, Jason-1, and

the European Remote Sensing Satellite-2 (ERS-2) and

the Envisat (Ducet et al. 2000). Datasets are provided by

Collecte Localisation Satellites (CLS). The spatial res-

olution of the datasets is 1/38 3 1/38. A mean sea surface

height (MSSH) is added to the observations and the

innovations are computed by interpolating the model

SSH to the observation grid. MSSH is calculated from

a long-term model integration. The assimilation window

is weekly.

The validation data include Argo floats profiles and

optimum interpolation sea surface temperatures (OISSTs;

Reynolds et al. 2002). OISST data are produced at

the National Oceanic and Atmospheric Administration

(NOAA) using both in situ and satellite SSTs, mapped

weekly on a 18 grid. Temperature and salinity profiles

from Argo floats are also used. To compare with the

assimilation results, we interpolate the OISSTs to the

model grid. The Argo profiles are interpolated linearly

to model density layers. All of the Argo float profiles

used over the 3-yr assimilation runs are shown in Fig. 2.

Several locations can belong to the same float. The

distribution of profiles is clearly inhomogeneous with

the densest sampling in the northwest Pacific, but we

are confident that it is sufficient to validate and com-

pare the different assimilation methods.

TABLE 1. Parameters used in the assimilation experiments.

Parameters Description Value

N Number of ensemble members 100

M Max number of local observations 49

r0 Observation radius of influence 700 km

se Observation error std dev 0.05 m

re Observation error decorrelation length 200 km

rh Initial error decorrelation length 1000 km

sd Layer thickness logarithmic std dev 10%

rb Decorrelation length of random forcing 10 grid cells

sT Atmospheric temp std dev 3 K

st Atmospheric wind stress std dev 0.03 N m22

sw Wind speed std dev 1.6 m s21

sr Radiative flux std dev 0.2 W m22

Dx, Dy Typical grid scale 50 km

t Time correlation scale 3 days

FIG. 1. Schematic summary of the assimilation experiments.
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For the comparison between the model results and

observations, we interpolate the model results to the

Argo float positions and interpolate the OISSTs to the

model grid in the horizontal direction by bilinear in-

terpolation. In the vertical direction, we interpolate the

Argo levels linearly to model density layers.

4. Results

a. Ensemble statistics

Comparing Eqs. (8) and (10), the analyzed best esti-

mates from the EnOI and the EnKF (the ensemble mean

in the case of the EnKF) methods only differ by the en-

semble used to calculate the forecast error covariance

matrix. The EnOI uses a static ensemble collected from

a long model run, while the EnKF ensemble is time de-

pendent and reflects the instantaneous dynamics.

The ensemble standard deviation is calculated by

s
e
5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N �
N

i51

(u
i
� �u)2

vuut , (11)

where se is the ensemble standard deviation, ui is

a member of the ensemble, and N is the ensemble size.

To view the correlation pattern, the correlation co-

efficient rkl is

r
kl

5

�
N

i51

(u
pi
� �u

p
)(u

li
� �u

l
)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�
N

i51

(u
pi
� �u

p
)2

vuut
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�
N

i51

(u
li
� �u

l
)2

vuut
, (12)

where ui is a member of the ensemble, k and l are the

indexes of two model variables at two grid points, and �u
p

and �u
l

are the corresponding ensemble averages.

Figure 3 shows the standard deviation of each en-

semble for surface temperature in the two experiments.

To compensate for the large time-averaged variability,

the EnOI standard deviation of temperature is weighted

by the parameter a in Fig. 3a. Figures 3b–d show three

snapshots of standard deviations of temperature in the

EnKF experiment on 2 January 2002, 24 April 2003, and

18 August 2004. In Fig. 3a, the large seasonal variability

of the North Pacific dominates the forecast error. Along

the eastern equatorial Pacific, the standard deviation is

similar to that of the EnKF experiment. The model un-

certainty of the EnKF experiment is changing with time.

In winter, the uncertainties are larger in the southwest

Pacific. In spring, they migrate northward to the western

equatorial Pacific and later in the summer to the north-

west Pacific.

In Wan et al. (2008), it is shown the correlations follow

the current patterns very well. We select a point located

at 338N, 1378E on the main axis and near a large me-

ander of the Kuroshio Current. Through the calculation

of the correlation coefficient between this point and

other points in the domain, we can analyze the vari-

ability of the current pattern. We select four snapshots

of EnKF correlations with the main current axis in 2004

(Fig. 4). As we know, the main current is expected to be

oriented southwest–northeast. However, during the

summer of 2004, a larger meander event occurred and

lasted for about 1 yr (Usui et al. 2008). In early 2004, the

current pattern is narrow, oriented southwest–northeast

(Fig. 4a) and then extends to the southeast and north-

west (Figs. 4b and 4c). For the EnOI experiment, the

correlation is stationary and reflects mostly the seasonal

variability but not the current pattern (result not shown).

At a relatively low horizontal resolution, it is difficult for

the model to reproduce the large meander. However, we

still get some information about the changes of the cur-

rent from the correlation patterns. The correlation of the

sea surface height (SSH) of the model in the EnKF ex-

periment (Fig. 5) agrees with the analysis of the current

pattern in the same region and the current stream por-

trays the large meander clearly.

Figures 3–5 illustrate the potential advantages of the

dynamical evolution of the error statistics in the EnKF

over the statistical EnOI. In the following, we assess

both methods against independent observations.

During the three years, an El Niño episode occurred

during the period of late 2002. In Fig. 6, four snapshots

were selected to illustrate the correlation pattern of SST

located at a point (08, 1358E) in the eastern tropical Pa-

cific, with two of images taking place during the episode

FIG. 2. Locations of Argo floats from 2002 to 2004 and split into

five regions for statistical testing. Region 1 is 208–528N, 1068E–

1708W; region 2 is 208–528N, 1708–1028W; region 3 is 108S–208N,

1288E–1608W; region 4 is 108S–208N, 1608–788W; and region 5 is

288–108S, 958E–708W.
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and the others happening during normal episodes. The

oceanic Niño indexes (ONIs) of the 3 months are 1.48,

20.12, and 0.24, according to the NOAA Web site. The

pattern shows high horizontal correlation during the

El Niño episode.

b. Validation against independent data

In this section, we first compare the standard de-

viation of the ensemble with the root-mean-square er-

rors (RMSEs) against OISSTs to monitor the evolution

of the ensemble. Figure 7 displays the results from the 3-

yr experiment. For the EnOI experiment, the ensemble

is static and its spread is constant, while the ensemble of

EnKF is time dependent and the spread fluctuates. In

the first months of the experiment, the EnKF spread

underestimates the RMS errors, but the two curves con-

verge during the course of the first year. The magnitude

of the spread is very close to the RMSE. The initial er-

rors in the stratification are unlikely to play an important

part in the sea surface temperatures. The EnKF error

statistics for SST are essentially in balance between the

uncertainty added by the model errors in the atmo-

spheric fields and their reduction when assimilating

the altimetry data. With the parameters chosen here, the

combination of the two shows no visible trend over 3 yr,

neither growing nor decreasing (‘‘ensemble collapse’’),

which indicates that the combination generates a sus-

tainable ensemble spread. The time series show a faint

seasonal cycle, with the error being slightly larger during

winter than summer. This cycle appears both in the

EnKF error estimate and in the RMS errors, indicating

that the evolution of the model errors in the EnKF is

realistic. In the surface, the model errors due to random

atmospheric forcing are therefore effective and the var-

iability of the spread shows realistic time-dependent

errors.

We compare the temperatures and salinities in dif-

ferent layers of the 3-yr experiments against observations

over the whole model domain. The evolution of the RMSE

over the 3-yr experiment is shown in Fig. 8. The model

surface temperature is compared to the OISST while all

other results are compared to Argo profiles. We select

three layers, the surface layer (top 3 m in the model); the

model layer with potential density 24.00 kg m23, rep-

resentative of the bottom of the mixed layer; and the

layer whose potential density is 27.02 kg m23, located

below the thermocline. It is noted that the spatial and

temporal sampling of the Argo floats is inhomogeneous,

FIG. 3. Ensemble standard deviation of surface temperature (8C): (a) EnOI static ensemble, (b) EnKF snapshot on

2 Jan 2002, (c) EnKF snapshot on 24 Apr 2003, and (d) EnKF snapshot on 18 Aug 2004.
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in contrast to OISST. This explains why the time series,

other than surface temperatures, are slightly more er-

ratic. Furthermore, we have not attempted any declus-

tering of the Argo data, so the RMSE may therefore be

weighted toward the northwest Pacific over other parts

of the basin and since the northwest is the most dynam-

ically active region, the RMSE against the Argo data

might overestimate the actual basin-average errors. The

comparisons are however clear enough for evaluating the

assimilation methods.

It is obvious that the RMSEs of temperature and sa-

linity at the surface and in the intermediate layer (s 5

24.00 kg m23) are smaller in the EnKF experiment than

in the EnOI experiment, and they are also smaller in the

EnOI than in the free run. The comparison holds at

nearly all times and at the three selected levels. After

assimilating with the EnOI, the RMS errors of the

temperature drop by 0.18C and those of salinity by

0.05 psu in the surface. The reductions are larger with

the EnKF, by 0.28C and 0.1 psu in the surface, re-

spectively. The percentage reduction at the surface from

the EnKF experiment is 17.0% for temperature and

33.3% for salinity, exceeding the values of 6.1% and

12.2% from the EnOI experiment. In the intermediate

layer (s 5 24.00 kg m23), the RMSE of the temperature

seems to decrease even more than at the surface, but the

Argo sampling favors the northwest Pacific where errors

are larger. The reduction percentages of EnKF in the

intermediate layer are 10.3% for temperature and 17.3%

for salinity, while those of the EnOI experiment are 1.8%

and 7.2%. In the deeper layer (s 5 27.02 kg m23), the

reductions are smaller, indicating that neither the EnOI

nor the EnKF have a strong impact under the thermo-

cline. This could be due to possible degradations of the

assimilation imbalances. The reduction percentages

from the EnKF and EnOI experiments in the deeper

FIG. 4. Autocorrelation coefficient of SST at 338N, 1378E (the white cross is the point), with other points of the

domain on (a) 4 Feb, (b) 12 May, (c) 18 Aug, and (d) 24 Nov 2004.
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layer are 7.8% and 3.6% for temperature and 4.6% and

20.5% for salinity. The model errors are created by

random atmospheric forcing fields. There is no obvious

shift (also see in Fig. 7). Though it cannot correct the

model enough, the assimilation results do improve. The

error reduction is constant over the whole 3-yr period,

showing satisfactory convergence for both the EnKF

and the EnOI. The EnKF performs better than the

EnOI with respect to salinity errors, either due to more

realistic correlations between sea surface heights and

model salinity fields, or indirectly due to better posi-

tioning of the ocean features.

To study the vertical distribution of the RMS errors,

we split the domain into five subregions shown in Fig. 2.

We select two subregions where Argo observations are

dense enough and the characteristics of these subregions

are representative to study the vertical distribution of

the RMSE. Figure 9 show the profiles of the tempera-

ture RMSEs and the salinity RMSEs from the surface to

500-m depth. Region 1, the northwest Pacific, is well

covered by numerous Argo floats, while region 4 is an

extension of El Niño-3.4. In both regions, the assimila-

tion consistently reduces the RMSEs both at the surface

and in deep waters.

Above the thermocline (;50–100-m seasonal ther-

mocline for region 1 and 200–250 m for region 4), and

especially for the top 100-m salinities in region 4, the

innovation is larger than that below the thermocline,

which shows that altimetry data can improve the control

of salinity, in contradiction with Vossepoel et al. (1999).

The reason is likely that the ensemble statistics used in

both the EnKF and EnOI are multivariate and project

equatorial sea level anomalies onto upper 100-m temper-

ature and salinities. The results of the EnKF experiment

FIG. 5. Autocorrelation coefficient of SSH at 338N, 1378E (the white cross is the point), with other points of the

domain and surface current stream on (a) 4 Feb, (b) 12 May, (c) 18 Aug, and (d) 24 Nov 2004.
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are overall better than those of the EnOI experiment,

especially in deep waters, showing that the EnKF has

not only a positive effect in surface waters, directly in

contact with the model errors, but also below.

Finally, the mean RMSEs of the temperatures and sa-

linities of different layers averaged over the whole Pacific

and for 3 yr in the three experiments are listed in Table 2.

In most layers, a reduction in RMSEs is evident for both

temperature and salinity, and the EnKF experiment shows

larger reductions than does the EnOI experiment.

5. Discussion and conclusions

We have compared two data assimilation methods,

the EnOI and the EnKF. Both of these approaches as-

similate real altimetry data into a HYCOM model of the

Pacific. The experiments spanned 3 yr from 1 January

2002 to 31 December 2004, and a free-running experi-

ment has been run during the same period. The results

are validated against the real observations: remote sens-

ing (OISST) and Argo profiles.

The present study confirms the findings of the twin

experiments by Leeuwenburgh (2005) but differs by us-

ing a real-data assimilation experiment. This study also

agrees with Durand et al. (2003) in the ability of the

satellite data assimilation to correct ocean fields below

the mixed layer as confirmed by independent profiles

from the Argo array.

The exploration of a dynamically evolving statistical

ensemble in the EnKF shows realistic features that are

missing in the EnOI static ensemble. The ensemble

statistics in the EnOI experiment near the ocean surface

FIG. 6. Autocorrelation coefficient of SST at 08, 1358W (the white cross is the point), with other points of the domain

on (a) 13 Nov 2002, (b) 20 Nov 2002, (c) 14 May 2003, and (d) 11 Feb 2004.

FIG. 7. RMSE vs OISST and the ensemble spread (8C) for (a)

EnOI and (b) EnKF experiments. The lines with cycle marks are

RMSEs against OISSTs, and the lines with cross marks are the

ensemble spread.
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are substantially influenced by the annual cycle in extra-

tropical regions. This influence is absent in EnKF because

the temporally evolving statistics are determined over

a time window that is much shorter than 1 yr.

Through the comparison of RMS errors in tempera-

ture and salinity in different layers, we find that the

EnKF yields marginal but consistent improvement over

the EnOI in the terms of the temperature and salinity

fields at all times and through the entire water column.

The improvements made by the EnKF over the EnOI

are, perhaps, smaller than expected, but they are still

significant with respect to the high sensitivity of the

currents to the water mass properties. However, the

implementation of the EnKF follows simplifying as-

sumptions, especially the assumption that the atmo-

spheric forcing is the only source of model error, and

could be further refined by including uncertainties in

other model parameters such as those of the mixing

scheme. Moreover, the parameter a is an important

factor in the EnOI experiment. Different parameters

in different seasons will help ensre that EnOI is im-

plemented well.

The EnKF ensemble spread seems well sustained

through the entire EnKF experiment, and fits well with

the observed errors against the OISSTs. Since the en-

semble spread is a balance between the source of the

uncertainties added at the surface boundary conditions

and a ‘‘sink’’ of the uncertainties removed by the as-

similation of sea surface heights, a balance for the ocean

surface seems to have been achieved with the value of

the error statistics used in this study. Even though the

error statistics applied to altimetry observations and to

atmospheric forcing may both be relatively high, the

study demonstrates that a nonlinear physical ocean

model can well be handled by the EnKF as an observed–

controlled system: observed by satellite altimeters and

FIG. 8. RMSEs of (a) surface temperature, (b) surface salinity, (c) temperature in the layer (s 5 24.00 kg m23), (d)

salinity in the layer (s 5 24.00 kg m23), (e) temperature in the layer (s 5 27.02 kg m23), and (f) salinity in the layer

(s 5 27.02 kg m23). The units are 8C for temperature and psu for salinity. The lines with cross marks are the free-

running RMSEs, the lines with square marks are the EnOI RMSEs, and the lines with cycle marks are the EnKF

RMSEs.
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FIG. 9. RMSE profiles of temperature and salinity in region 1 (208–528N, 1068E–1708W) and region 4

(108S–208N, 1608–788W). RMSEs of (a) temperature in subregion 1, (b) salinity in subregion 1, (c)

temperature in subregion 4, and (d) salinity in subregion 4. The lines with cycle marks are the free-

running RMSEs, the lines with triangle marks are the EnOI RMSEs, and the lines with square marks are

the RMSEs of EnKF.
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controlled by atmospheric forcing fields. The relative

importance of other types of observations and other

control parameters can then be evaluated within a simi-

lar framework.
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