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[1] This paper introduces a numerical scheme developed to model the wetting and drying
of coastal areas by the tide, suitable for an oceanic circulation model using finite
differences. It is based on existing numerical schemes developed for isopycnic models for
which the layer thickness can vanish when they interact with the bottom topography.
Some original features are added and the scheme is optimized to accurately reproduce
analytical solutions of an idealized problem. The main parameters of this numerical
scheme are (1) a critical height, which depends on the local bottom slope and the grid step,
and (2) the Rossby number. This original numerical scheme is applied to a realistic
barotropic configuration of the Normand‐Breton Gulf where tidal amplitudes are large and
where the wet/dry front location varies greatly.
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1. Introduction

[2] The numerical modeling of coastal regions has recently
gained considerable attention in the oceanography commu-
nity. It is now necessary to take into account the particular
dynamics of coastal region within high‐resolution (i.e., few
kilometers) basin‐scale circulation models. To do so, prim-
itive equation models developed in the context of modeling
the deep ocean are used sometimes without any significant
change to their numerical schemes. This is convenient and
adequate for many oceanic coastal regions. However, even
when using fine model grid spacing, some processes are not
represented and need to be parameterized or adapted. This is
the case of the wetting and drying process. In regions where
the tide is important, the treatment and the representation
of the wetting and drying process within the model is crucial
to have an accurate description of the local dynamics.
[3] The wetting and drying problem in shallow water

equations has been intensively studied during the last
20 years in particular for coastal engineering applications
[Balzano, 1998; Lynett et al., 2002; van’t Hof and Vollebregt,
2005, and references therein] using finite element or finite
volume approaches. This problem can be handled either by
(1) dynamically adapting the mesh according to the position
of the wet/dry interface (the calculation grid moves [Lynch
and Gray, 1980]) or (2) by resolving the equations on a
fixed grid with the issue of partially wet cells adressed by
using appropriate numerical methods [Leclerc et al., 1990;
Bradford and Sanders, 2002; Begnudelli and Sanders, 2006].
The case (1) has been intensively studied until the end of the
90s. The methods related to (1) generally consist in three
steps: the first step is the determination of the position of the

wet/dry interface, the second step is a remeshing step, and
the last step consists of a projection of the variables onto the
new mesh. The computational cost of (1)‐like methods is
very high thus the use of algorithms related to case (2) is
preferable for general applications. The modeling commu-
nity has also focused on solving wetting and drying pro-
blems on fixed numerical grids. A general review of the
numerical algorithms used for (2)‐like methods are given by
Bates and Horritt [2005] and Balzano [1998] where several
methods averaging the water depth at the cell interface on an
Arakawa C grid are compared. In order to avoid spurious
oscillations on the velocity, Hervouet and Janin [1994] and
Benkhaldoun and Monthe [1994] cancel the topography
gradient term in partly flooded cells. Aureli et al. [2008]
propose the combination of two Monotonic Upstream cen-
tered Scheme for Conservation Laws (MUSCL), one for the
surface elevation and one for the water depth, with respect
to the local Froude number. These previous studies mainly
concentrated on the representation of an accurate surface
elevation. Although they validated their results for the sim-
ulated surface elevation, they did not for the velocity fields.
[4] Modeling the wetting and drying has however rarely

been undertaken in coastal circulation models using finite
difference methods. Examples are given by Lazure and
Salomon [1991], Lazure and Jegou [1998], and Oey [2005,
2006] which are, to our knowledge, the only studies with
the development of a numerical scheme taking into account
the wetting and drying processes in oceanic circulation
models using a finite difference framework. Numerical
methods using finite element and finite volume have inspired
finite difference model developers, which now use numerical
schemes globally conserving mass, energy, enstrophy, and
tracers quantity (a property which is inherent to finite vol-
ume models). This is the case of the Miami Isopycnic
Coordinate Ocean Model (MICOM [Bleck and Smith, 1990;
Bleck et al., 1992]) and of the Hybrid Coordinate Ocean
Model (HYCOM [Bleck, 2002]). In particular, stimulated
by the finite element/volume approach, specific numerical
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schemes dealing with the intersection between layers and
topography (i.e., vanishment of internal layers) have already
been implemented in the MICOM and HYCOM codes to
calculate the baroclinic pressure gradient.
[5] The main goal of the present study is to propose an

original numerical scheme to represent wetting and drying
processes. This scheme can be used for the resolution of the
barotropic conservation laws in general oceanic circulation
models using finite differences. In contrast to the afore-
mentioned studies, we focus on the analysis of both the
surface elevation and velocity field obtained using the new
numerical scheme, insisting on the velocity field for trans-
port and drift applications. By representing accurately the
wetting and drying process in finite difference oceanic cir-
culation models, it could lead to more accurate numerical
solutions in coastal regions.
[6] To develop and test numerical schemes, it is interesting

to compare the numerical solutions of idealized problems to
their analytical reciprocity. There are not many known ana-
lytical solutions for wetting and drying configurations but
Thacker [1981] has found some exact solutions for the non-
linear shallow water equations in 1‐D and 2‐D in parabolic
basins. These analytical solutions can be fruitfully used to
evaluate the accuracy of the representation of the wetting
and drying process [Balzano, 1998; Lynett et al., 2002].
[7] In section 2, we present and describe the numerical

algorithm we have developed, and in section 3 we discuss its
optimization and limitation by comparing the numerical
scheme results to the Thacker’s analytical solutions. In
section 4, an application to a regional coastal model of the
Manche is also presented.

2. Numerical Algorithm

2.1. Equations

[8] We consider the 2‐D shallow water equations
[Cushman‐Roisin, 1994] which can be written

@TU þ U � #ð ÞU � foV ¼ �g@X H � Hbð Þ þ FX ;

@TV þ U � #ð ÞV þ foU ¼ �g@Y H � Hbð Þ þ FY ;

@TH þ div HUð Þ ¼ 0;

ð1Þ

where U = (U, V) represents the horizontal components of
the velocity field, fo is the local Coriolis parameter, g is the
earth gravity, H is the water column thickness, Hb is the
position of the bottom, H − Hb is the sea surface height
(SSH) and also define as z in Figure 1, and FX and FY are
dissipation terms. The dissipation terms are split into F =
Diff(U) + Q, where F = (FX, FY), Diff(U) is of numerical
origin and needed to avoid the development of small‐scale
noise, and Q is associated with the parameterization of
physical dissipation processes (e.g., bottom friction). The
wetting and drying process is associated with shocks in
the velocity field as the point where the thickness vanishes
is usually associated with a velocity discontinuity. The
advection terms solved using centered schemes are disper-
sive (i.e., creation of numerical oscillations) and shocks
generally generate large‐grid‐scale noise that can contami-
nate the results. To deal with shocks, harmonic or biharmonic
viscosity has to be used with a viscosity parameter depending
on the deformation tensor [Smagorinsky, 1963;Winther et al.,
2007]. For the academic configuration used in this study
and presented in section 3, an harmonic operator has been
used (our model configuration did not allow the use of a
biharmonic diffusion operator) and is defined as

Diff Uð Þ ¼ @X �@XUð Þ þ @Y �@YUð Þ; ð2Þ

with

� ¼ CsDX 2defor; ð3Þ

with defor =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@XU � @YVð Þ2þ @YU þ @XVð Þ2

q
, the defor-

mation tensor,DX is the grid step, and Cs is the Smagorinsky
coefficient with Cs = 0.05 (see Winther et al. [2007] for
justification). However, for the more realistic configuration
of the Normand‐Breton Gulf, we use a biharmonic operator
define as

Diff Uð Þ ¼ @X �′@X 3Uð Þ þ @Y �′@Y 3Uð Þ; ð4Þ

with

�′ ¼ CsDX 4defor: ð5Þ

[9] In addition, for the more realistic configuration, the
bottom friction has to be taken into account in the dissipation
term. In a 3‐D model, the frictional forcing is represented as
the vertical derivative of a stress assumed to be equal to the
stress at the boundary and linearly decreasing to zero over a
critical thickness chosen to be approximately 10 m [Bleck
and Boudra, 1986]. The bottom stress (t) follows a qua-
dratic law and is given by

t ¼ ��Cd Uj jU ; ð6Þ

where r is the density, and Cd is a drag coefficient (Cd =
0.003). For the barotropic case considered here, the effect of
bottom friction is then given by

Q ¼ �Cd Uj jU
H

: ð7Þ

Figure 1. Schematic of the idealized configuration used.
Based on Thacker [1981].
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[10] In the first part of this study, we consider a 1‐D
model and assume that ∂Y = 0. The resulting 1‐D shallow
water equations are then

@TU þ U@XU � foV ¼ �g@X H � Hbð Þ þ FX ;

@TV þ U@XV þ foU ¼ FY ;

@TH þ @X HUð Þ ¼ 0:

ð8Þ

2.2. Numerical Schemes

[11] Inmost oceanic general circulationmodels, equation (1)
or equation (8) are generally solved on a C grid [Arakawa and
Lamb, 1977]. Isopycnic models have a long history for
dealing with vanishing layers as isopycnic layers often out-
crop bottom topography and need to disappear [Bleck and
Boudra, 1986; Bleck and Smith, 1990; Bleck et al., 1992], a
problem for which, numerical algorithms have been devel-
oped and tested and which is similar to the wetting and
drying of a land. Figure 2 shows the associated numerical
problems and a zoom of an idealized region where the water
column depth vanishes. It underlines the problem of non-
physical velocity points as they are associated with the
absence of the fluid. As a result the velocity of these grid
points should not be used in the numerical calculations. It
also shows that the SSH (or pressure) gradient at the first
velocity point inside the physical region has to be carefully
evaluated to avoid taking into account the bottom topogra-
phy gradient instead of the sea surface elevation one.
[12] In addition, the fluid thickness has to remain non-

negative, a property that is not verified by common schemes

(e.g., centered schemes) but there exists other numerical
schemes ensuring positivity (e.g., flux corrector schemes).
[13] As mentioned in section 1, all the previous problems

have already been identified and dealt with in isopycnic
models and we thus base our approach on these available,
robust, and computationally efficient numerical schemes.
2.2.1. Continuity Equation
[14] To keep the layer thicknesses positive when the

layers become very thin or even vanish, it is necessary to use
the upwind scheme, which is a positive definite scheme. The
upwind scheme is however known to be very diffusive, and
it should thus be restricted to areas where it is needed. Its
combination with a higher order, but not positive definite
scheme, is thus a good compromised for the calculation
of the thickness over the whole area. There exists a few
numerical schemes combining the upwind scheme to higher‐
order (generally second‐order) schemes so as to preserve
positive thicknesses [Zalesak, 1979; Smolarkiewicz, 1983].
In this study, we have chosen the Zalesak scheme for the
computation of the barotropic continuity equation.
2.2.2. SSH Gradient
[15] The only way to deal with the SSH gradient calcu-

lation, intervening in equation (1) or equation (8), is to
extrapolate the gradient from neighboring physical (i.e.,
wet) region to the region where there exists a point with zero
water thickness. The resulting SSH gradient for the velocity
points neighboring a zero thickness point is then calculated
at first order but remains close to its physical value. This
method has been successfully used in the MICOM and
HYCOM models [Bleck and Smith, 1990]. The idea is to
average the SSH gradients of all direct neighboring points
with a weight proportional to the layer thickness when
below a critical thickness hcP

wi ¼ min hcP;Hi;Hi�1ð Þ;

grad �ð ÞUi ¼ wi �i � �i�1ð Þ=DX þ hcP � wið Þr�i
hcP

;

ð9Þ

where the superscript U in grad(z)i
U means the gradient is

calculated on a velocity point (Figure 2) and

r�i ¼ wi�1 �i�1 � �i�2ð Þ=DX þ wiþ1 �iþ1 � �ið Þ=DX

�P þ wi�1 þ wiþ1
; ð10Þ

where the index notation is defined in Figure 2.
[16] Notice the two parameters in the latter scheme hcP

and �P. hcP represents the cutoff thickness below which
an average of the SSH gradient term is taken into account.
�P is the damping thickness (below, the average gradient is
damped toward zero). These two parameters have to be
adjusted for the general case.
2.2.3. Coriolis and Advection Terms
[17] A special treatment is also necessary to avoid using

the Coriolis and advection terms when they are computed
using velocity values coming from the nonphysical domain
(i.e., dry region). Contrarily to the methods used in MICOM
and HYCOM [Bleck and Boudra, 1986; Bleck and Smith,
1990], we adopt an elementary and cheap method: the
Coriolis and advection terms are first calculated using the
usual centered schemes and then included into the averaging
procedure for the SSH gradient discussed above. The global

Figure 2. Schematic of the discretized grid. The thick
black line is the bottom topography, the thin black line is
the real free surface, and the dashed line is the numerical
free surface. Notice the inaccuracy where the free surface in-
tersects the bottom, which can lead to errors in the calcula-
tion of the SSH (i.e., pressure) gradient term.
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averaging procedure including all evolution terms except the
dissipation leads to

wi ¼ min hcP;Hi;Hi�1ð Þ;

evol fi ¼ wievoli þ hcP � wið Þevoli
hcP

;

evoli ¼ wi�1evoli�1 þ wiþ1evoliþ1

�P þ wi�1 þ wiþ1
;

evoli ¼ �Adveci � Corioi � grad Pð Þi;

ð11Þ

where Adveci, Corioi, and grad(P)i are the advection,
Coriolis, and surface pressure gradient terms, respectively,
calculated for each (U, V) component on a specific point
with a centered scheme. The dissipation term could also be
averaged, but this has no effect on the simulations presented
here. It can be explained by the additional nudging of the
velocity field discussed in section 2.2.4.
2.2.4. Final Nudging of the Velocity Field
[18] The previous procedure allows for the limitation of

errors when calculating the velocity evolution terms in the
physical region. When a point is dry, it might acquire
unrealistic velocity magnitudes that rapidly diverge from the
realistic values of the physical region. This can cause pro-
blems if the point eventually becomes wet. To solve this
issue, it is necessary to constrain the velocity field in dry
areas to ensure velocity magnitudes approaching the ones of
the nearby wet points. This is achieved by developing a
nudging scheme for the velocity field toward neighboring
point values. Tests with other methods (e.g., no constraints,
nudging toward zero) have shown that this was by far the
best choice. The nudging procedure is

wi ¼ min hcU ;Hi;Hi�1ð Þ;

Uf
i ¼ wiUi þ hcU � wið ÞUi

hcU
;

ð12Þ

where Ui is the velocity at index i calculated from the
momentum equations (using the schemes presented in
section 2.2.3), Ui

f is its final and averaged value, and U i is
given by

Ui ¼ wi�1Ui�1 þ wiþ1Uiþ1

�U þ wi�1 þ wiþ1
: ð13Þ

[19] Notice the two new parameters hcU and �U which
have to be adjusted for the general case. In order to do so,
we use analytical solutions derived by Thacker [1981].

3. Optimizing the Model Parameters Using
an Idealized Problem

[20] We have defined four parameters that we reduce to
three (tests conducted with hcU not equal to hcP did not
improved the solutions): hc = hcU = hcP, �U, and �P. These
parameters have to be carefully chosen to avoid numerical
problems (e.g., numerical noise) and to give accurate solu-
tions. If hc is chosen too small, the nonphysical solutions
are increasing and spreading within the physical domain,
and might lead to a model blow up. If hc is chosen too large,
the solution is unnecessarily damped and loses accuracy.

A value of hc for which the model is stable for all config-
urations and domains, probably leads to the case of damped
and inaccurate solutions. The three aforementioned para-
meters could be chosen using specific tests for each con-
figurations. In this study, using analytical solutions, we
determine the parameters optimized value as a function of
few parameters.

3.1. Thacker’s Solutions

[21] Thacker [1981] has found exact inviscid analytical
solutions for both equation (1) and equation (8) for which
some areas are periodically dried and wetted again. Oscil-
lating solutions have been found for parabolic basins whose
depths are given by

Hb ¼ Do 1� x

L

� �2
� �

; ð14Þ

where Do is the maximum depth of the domain, and L is half
the length of the basin (where the water thickness is not
null). The pulsation period is constant and given by:

! ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2o þ 2gDo

L2

r
: ð15Þ

[22] To deal with the general case, it is convenient to use
nondimensional equations and use the following nondi-
mensional variables

x ¼ X

L
;

h ¼ H

Do
;

d ¼ D

Do
;

t ¼ !T ;

u ¼ U

!L
;

v ¼ V

!L
:

ð16Þ

[23] Equation (8) then becomes

@tuþ u@xu� Rov ¼ �Bu@x h� hbð Þ þ Fx;

@tvþ u@xvþ Rou ¼ Fy;

@thþ @x huð Þ ¼ 0;

ð17Þ

where

Bu ¼ gDo

!2L2
;

Ro ¼ fo
!
;

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2Bu

p
:

ð18Þ

[24] Equation (17) is thus monitored by a single parameter
Bu representing the influence of the coriolis effect versus the
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gravity effects. Notice that for the nonrotating case (fo = 0),
Ro = 0 and Bu = 1/2. The Thacker’s solutions we have used
in this study are

hb ¼ 1� x2;

u ¼ �� sin tð Þ;

v ¼ �� f cos tð Þ;

h ¼ 1� x2 þ 2� cos tð Þ x� �

2
cos tð Þ

� �
;

ð19Þ

where h is a parameter characterizing the nondimensional
amplitude of the periodic motion. The shoreline is given by
x = h cos(t) ± 1, so that 2h represents the total distance over
which land periodically dries and wets on each side of the
basin.
[25] Thacker’s study provides a useful set of analytical

solutions to validate a numerical solution of the wetting and
drying process. It also allows for the optimization of the
numerical schemes dedicated to the wet and dry process.
Thacker’s solutions depend mainly on the parameter h, but
also on the nondimensional local slope ∂hb/∂x = s (where
land periodically wets and dries s ∼ 2). Another important
parameter is Bu, which is the only parameter of the nondi-
mensional equation (17) (dissipation excluded), and finally,
the parameters characterizing the numerical discretization,
Dx and Dt, representing the nondimensional grid step and
time step, respectively, have to be considered too. Thus the
coefficients hcU = hcP, �U and �P depend a priori on five
parameters. Studying the dependency of each coefficient to
each parameter is cumbersome and thus, the parameter list
needs to be reduced.
[26] First, we neglect the parameter Dt as it is associated

with time derivative because we have seen that the main
numerical problems arise from spatial schemes and not the
temporal ones. Figure 2 also shows that an elementary cell
can be dried when its thickness is less than sDx (where s is
the local bottom slope). Thus the important parameter is
Dh = sDx and we define hcU = hcP = aDh, �U = aU hcU and
�P = aP hcP, and calculate the best a coefficients and their
dependency on the parameters Bu and h.
[27] To investigate the sensitivity of the numerical scheme

and find optimized value for this specific configuration, we
compare the numerical and analytical solutions considering
the following fields: (1) mean currents (time averaged over
the seiche period), (2) mean transports (time averaged over
the seiche period), (3) accuracy of the velocity field in the
wetting and drying region, and (4) the conservation of the
amplitude (measured in the middle of the domain).
[28] The mean currents and mean transports for Thacker’s

solutions are nonzero as they have to be calculated over the
physical region. In the regions of wetting and drying, the
time mean of the considered field has to be calculated
over the time period when h > 0 and not during the whole
period of the oscillations. When f is different from zero,
this method yields to a zero mean for u and hu but not for
v and hv.

3.2. The Nonrotating Case

[29] When f = 0, v = 0 and Bu = 1/2 is constant, and h is
the only remaining parameter in equation (17). Figure 3

shows the results for the reference experiment where the
values for the considered parameters are given by

Dx ¼ 0:005;

Dt ¼ 0:0025;

� ¼ 8Dx;

� ¼ 2;

�U ¼ 0:01;

�P ¼ 0:01:

ð20Þ

[30] Figure 3 shows the results of the reference experi-
ment run for 10 oscillation periods with parameters defined
in equation (20). The analytical (dashed lines) and numerical
(solid lines) solutions are plotted for the velocity field in the
vicinity of the wetting/drying region during the last oscil-
lation (Figure 3a), the time average of the velocity field
(Figure 3b), and the time evolution of the error (root mean–
spatial mean square) of the layer depth (Figure 3c) and the
transport hu (Figure 3d). There is a slight overshoot in the
simulated velocity field compared to the predicted velocity
field, but the two solutions are similar (Figure 3a). A mean
current develops in the wetting drying region because of the
damping we impose (Figure 3b). However, this region is
associated with small layer depth, thus the associated local
transport is very low. The mean current reaches u = 20 ×
10−5 after the 10 oscillation periods which is small com-
pared to the maximum velocity in this region Umax = h =
0.04. For the realistic configurations the mean currents can
be of importance if one is interested in the long‐term drift of
tracers or particles. It is necessary to evaluate the “numerical
drift” and compare its magnitude to the observed velocity
drift magnitude (due to tidal rectification, winds, etc.) If this
numerical drift is not negligible, the only method to alleviate
it is to reduce the model grid step in the wetting and drying
region.
[31] Figure 4 shows the position of the simulated shore-

line with respect to time and compares it to the analytical
position of the shoreline. Results show that the predicted
and simulated solution of the shoreline location compare
well. The model has a slight shift toward the shallow waters
(approximately representing two grid points) which happens
early in the run. This is probably due to the approximations
and necessary damping associated with the numerical
scheme in the area where h becomes small. At the position
of the analytical shoreline (2 grid points below), the water
depth is h = 0.002 = 0.2sDx. This is small if the wetting and
drying region extends over several grid points: the height
variation in this region is then much bigger than sDx. For
example, if the wetting and drying region extends over one
grid point, then the error represents only about 10%.
[32] Numerical experiments have also been performed

with different triplets (a, aU, aP) to investigate the optimal
value range for these parameters. Results show that there
does not exist a precise optimal values for these parameters
but a range of values. The most sensitive value is a, for
which the best results are obtained with a 2 [1, 2]. Figure 5
shows the impact of varying the parameter from the refer-
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Figure 3. Comparison between the analytical solution (dashed line) and the numerical (solid line) solu-
tion for (a) the velocity fields at different times, (b) the mean velocity, (c) the time evolution of the error
(root mean square) of the layer depth, and (d) the time evolution of the error (root mean square) of the
transport.
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ence experiment (where a = 2, solid lines) on different
diagnostics. Results show that the simulated velocity field,
transport and layer thickness compare better to their ana-
lytical reciprocity when a = 2 which is the reference case.
The experiments using larger a value (a = 4, dashed lines)
and lower a value (a = 0.5, dotted lines) show larger errors.
The case of a = 1 is better for the conservation of the

free surface amplitude (result not shown here) but a = 2
represents better the velocity field in the wetting and drying
regions. When a = 2, the solution is more robust as it leads
to a SSH damping over a wider region. In realistic config-
urations, wetting and drying regions are generally associated
with an external forcing (generally the tide) which maintains
the amplitude of the oscillation in the long‐term. Local

Figure 4. Position of the shoreline for the analytical solution (dashed line) and the simulated position of
the shoreline (solid line, defined by h ≤ 10−2h).
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Figure 5. Impact of varying the parameter a from a = 2 (reference experiment, solid line) to a = 0.5
(dotted line) and a = 4 (dashed line) on (a) the time average of the difference between analytic and numer-
ical transport, (b) the time average of the difference between analytic and numerical velocity, (c) the time
evolution of the root mean square error of the layer thickness, and (d) the time evolution of the root mean
square error of the transport.
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accuracy, and robustness of the scheme, is thus a better
property to achieve and the choice of a = 2 is recommended
for models used operationally. This particular choice of a
would, however, not necessarily be optimal to model water
running down a slope. Values taken away from this range

(i.e., [1, 2]) leads to inaccurate results. An optimum choice
of a does not exist to provide better results for all choice
of criterion.
[33] Figure 6 is the same as Figure 5 except that a sen-

sitivity test of the model solution on the choice of aU is

Figure 6. Same as Figure 5 but varying the aU. The solid line is aU = 0.01 (reference experiment), the
dotted line is aU = 0.005, and the dashed line is aU = 0.02.
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conducted. The reference experiment (aU = 0.01, solid
lines) is compared to cases where aU = 0.02 (dashed lines)
and aU = 0.005 (dotted lines). Results show again that the
reference experiment leads to a better agreement with the
analytical solution. Varying aP does not impact the solution
significantly (not shown here). For any aP chosen less than
0.1 (but not zero), the results are similar and we thus define
aP = aU = 0.01.
[34] As already mentioned in the introduction, in this

study, we mainly focus and optimize the parameters for the
velocity field for transport and drift applications. This could
lead to degraded SSH (or layer thickness) evolution. In fact,
the evolution of the SSH (or layer thickness) is indeed
given by the divergence of the net transport, a quantity that
is trivial to calculate, even with zero layer thickness, and,
provided one uses positive schemes (such as Zalesak), no
other transformation have to be performed on the SSH
whose accuracy thus mostly depends on the accuracy of the
velocity field. As explained above, things are more prob-
lematic for the velocity field for which it is necessary to deal
with shocks for the velocity equation. The velocity field is
thus the limiting factor and improving its accuracy improves
the accuracy of the SSH. As shown in Figures 5 and 6 the
optimum values for the velocity field are also optimum for
the layer thickness (see panel c).
[35] We have checked that the accuracy of the SSH agrees

with the analytical solution and the discrepancies are only
located in the close vicinity of the shoreline (where the layer
thickness becomes zero). As seen in Figure 4 there is a slight
asymmetry for the accuracy of the shoreline (and SSH)
evolution: the precision is better when the water flows off-
shore than when it flows onshore. This is due to the use of
the upwind scheme (in the Zalesak algorithm) in areas with
small water thickness and the fact that our scheme extra-
polates the velocity field horizontally for the velocity point
just after the shoreline. For water flowing offshore, the flux
at the shoreline will be null (in agreement with the analytical
expectation) whereas for onshore motion it will not which
induces a rapid “wetting” of the next cell and an onshore
displacement of the shoreline.
[36] Finally, sensitivity tests were conducted on the choice

of values for parameters defined in equation (20) with respect
to h andDX. The results show that larger amplitudes or model
grid steps lead to stronger numerical errors. The accuracy of
the results thus depends on h and DX but the optimum
values for the a parameters to get the lowest errors remain
unchanged and are thus independent of the model grid
resolution and of the nondimensional oscillation amplitude.

3.3. Results for the Rotating Case

[37] When f is not equal to zero there exists an addi-
tional parameter Bu on which the previous parameters could
depend. The previous experiments are conducted again with
different values of Bu (i.e., varying the nondimensional
Coriolis parameter Ro from 0 to 1, its maximum value).
Notice that v is different from zero in this case so that the
mean transport parallel to the coast is now an important
process to test the accuracy of the scheme. Thacker’s solu-
tions show that both the mean transport and mean velocity
parallel to the coast are nonzero.
[38] There are no differences between the rotating case

with small values of Ro and the nonrotating cases. For the

numerical experiments with moderate and large (close to
one) value of Ro, results show that there exist one optimal
choice for the a coefficients. We thus focus on the results
given by a strong rotating case (i.e., Ro = 0.9) and we use
identical parameters to the previous nonrotating reference
experiment described above. Figures 7 and 8 show a com-
parison between the numerical solutions (plain lines) and
analytical solutions (dashed lines) for the velocity u during
the last oscillation period (Figure 7a), the mean (time
average) current u (Figure 7b), the mean parallel current v
(Figure 7c), and the mean parallel transport hv (Figure 7d),
where (a, aU, aP) = (2, 0.01, 0.01), similar to the nonrotating
experiment. The error on the mean simulated current u has
been reduced and remains small compare to the nonrotating
case. Although, the mean simulated current v is shifted
inshore (two grid points) and smaller than the analytical mean
current, it qualitatively compares well with the predicted
solution. Its maximum value reaches 12 × 10−3 to be com-
pared to the maximum instantaneous velocity of 36 × 10−3.
The mean simulated transport well agrees with the analytical
solution of the mean transport, with a 10% error near the
wetting drying region where the transport is the largest.
[39] Varying a yields to the same results as for the non-

rotating case. Figure 9 shows the difference between the
numerical and analytical solutions for three different choices
of a. Diagnosing the meridional velocity, the temporal mean
meridional transport, the spatial mean water thickness and
transport show that the results are similar to the nonrotating
case and that the optimal value choice for the parameter is
still a = 2 so that hcU = hcP = 2sDx.
[40] Varying a does not significantly impact the solution

as long as the value is smaller than approximately 0.1.
However, there are significant differences when varying aU.
Results show that solutions are similar to the theory when
aU = 0.001 (Figure 10). When aU < 0.0005, the simulation
can become unstable and cause the model to blow up. For
these cases, the mean parallel velocity and transport are
improved (the two grid point shift still exists, but the
maximum speed is closer to the analytical maximum speed).
[41] The Coriolis effect has thus a strong effect on the

accuracy of the numerical schemewe discussed in section 3.2.
When considering rotation, the parameter aU is the only one
that depends on Bu (i.e., Ro) and should be carefully chosen to
maximize the accuracy of the numerical scheme. In practice
for oceanic general circulation models, for which Coriolis is
always considered and largely contributes to the regional
ocean dynamics, the choice of aU = 0.001 is recommended.
[42] Thacker [1981] has also provided a set of solutions

for 2‐D cases, but they do not drastically differ from the 1‐D
solution (parabolic basin with a rotating flat free surface or a
pulsating parabolic free surface). The optimized choices for
the values of the different parameters of the 1‐D case are
also valid for the 2‐D case.

4. A Realistic Case

[43] The previous numerical scheme can be easily adapted
to a realistic configuration with tides. As the time period
associated with the tides (diurnal and semidiurnal) is close
to the inertial time period for most of the ocean then Ro =
f/w ’ [0.5 − 1]. Thus we choose aU = 0.001 to optimize the
accuracy of the scheme. The parameter can be adapted to the
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Figure 7. Analytical solutions (dashed line) and numerical solutions (solid line) for (a) the cross‐shore
velocity u at different times, (b) the mean cross‐shore velocity, (c) the mean alongshore velocity, and
(d) the mean alongshore transport.
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local bottom slope by defining a = 2. In practice, to avoid
problems over flat areas, we choose

hcÛ ¼ hcP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hmin2 þ 2sDxð Þ2

� �r
; ð21Þ

where hmin = 0.1 m.

4.1. The Normand‐Breton Gulf Configuration

[44] Along the northern French coast in the Manche
(English Channel), the mean tide amplitude is approximately
8 meters and reaches up to 13 meters in the Normand‐Breton
Gulf area (Mont Saint Michel Bay, northwest of France).
This region is well known tobe subject to strong wetting
and drying (Service Hydrographique et Océanographique de

Figure 8. Position of the shoreline for the analytical solution (dashed line) and numerical one (solid line,
defined by h ≤ 10−2h).
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Figure 9. Sensitivity of the error with respect to the analytical solution for different choices. The solid
line is a = 2 (reference experiment), the dashed line is a = 4, and the dotted line is a = 1. The considered
fields are(a) the mean alongshore velocity, (b) the mean alongshore transport, (c) the time evolution of the
root mean square of the thickness, and (d) the time evolution of the root mean square of the alongshore
transport.
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la Marine (SHOM), http://www.shom.fr/). In this area, for
high tide coefficients, the sea can uncover more than 10 km,
and some of the strongest tidal currents are found: up to 5 m/s
in the Raz Blanchard region at the northwestern tip of the
Cotentin peninsula.
[45] The HYCOM model [Bleck, 2002] has been modified

to include the previous aforementioned wetting and drying

schemes. This model is called HYCOM‐WD. It has been
used to simulate tidal dynamics in the Normand‐Breton Gulf
area, in particular the strong wetting and drying conditions
at the Mont Saint Michel Bay. Only one homogeneous layer
is used (i.e., barotropic ocean) with a realistic bottom
topography described in Figure 11.

Figure 10. Same as Figure 9 but for aU.
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[46] The model is projected on a Mercator grid with a
model grid step varying from DX = 140 m to DX = 150 m.
The ocean dynamic only takes into account the tidal forcing
which is prescribed at the open boundaries using harmonic
modes from the MOG2D tide model [Carrère and Lyard,
2003]. Special boundary conditions have been implemented
in the HYCOM‐WD based on Lax [1972] and Roe [1981].
They show that, if we suppose that the gravity waves at the
boundary are faster than the advection, the boundary problem
is well posed only if we impose one variable at the boundary
(e.g., SSH, normal velocity or mass flow). The other variable
is then deduced by the resolution of a Riemann problem at the
boundary [Lax, 1972]. The realistic configuration described
in this study uses a relation of flow conservation as well as a

relation coming from the shock/rarefaction curves of the
homogeneous shallow water system, written with respect to
the normal velocities and height [Roe, 1981].
[47] The starting time of the model simulation is

10 September 1997 and has the corresponding sea eleva-
tion and velocity field to have the correct mass. The model
is run for 15 days. We choose this specific time to simulate
the tides on 19 September 1997 which corresponds to a large
tide coefficient as it reached 116, for a maximum theoretical
coefficient of 120. The model is run with baroclinic and
barotropic time steps of 12 and 1.5 s, respectively, and also
uses a new time stepping scheme for the slow part of the
barotropic mode described by Morel et al. [2008]. The
baroclinic time step is needed despite the barotropic ocean

Figure 11. Topography of the Normand‐Breton Gulf area, referenced to the mean level depth and built
with the SHOM bathymetry and tide database. The land mask is in white.
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because in HYCOM the barotropic contribution of the
advection and the diffusion is added in the baroclinic
momentum equations. The harmonic analysis is carried out
over 30 tidal periods. The bottom friction is formulated using
a quadratic law given by equation (6) with Cd = 3 × 10−3.

4.2. Tidal Dynamics in the Normand‐Breton Gulf

[48] MARMONDE is a system (developed at the SHOM)
yielding estimates of SSH from combinations of tidal gauge
measurements and output of a model calibrated on the
English Channel [Simon, 2007]. MARMONDE has a reso-
lution of one minute at the coast and approximately five
minutes elsewhere. The high density of observations at the
coast improves greatly its resolution but MARMONDE
cannot be considered as perfect and its uncertainties are
difficult to evaluate (no data apart from the tide gauges that
are already integrated in MARMONDE). MARMONDE
does not conserve mass or momentum due to the nudging
and optimal interpolation of tidal amplitudes and phases to
fit the available data. However, it is our best estimate in the
area as it is the reference taken for hydrographic measure-
ments in the Normand‐Breton Gulf region. It is worthwhile
to mention that MARMONDE has not been used to force
the model at the open boundaries because it does not pro-
vide the velocity field which is necessary to ensure model
mass conservation. The accuracy of the MARMONDE tidal
data in the open ocean (i.e., our model open boundaries) is
also not as accurate as in the coastal areas due to the sparce
data. This is well shown in Figure 12 which is a spatial map
of the relative error computed as follows:

Rx ¼ �H* cos �Hð Þ � �M* cos �Mð Þ;

Ry ¼ �H* sin �Hð Þ � �M* sin �Mð Þ;

Rerr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
x þ R2

y

q
�M

;

ð22Þ

with hH and hM as the M2 tidal amplitudes for HYCOM‐
WD and MARMONDE, respectively, and �H and �M as

the M2 tidal phases for HYCOM‐WD and MARMONDE,
respectively.
[49] Most of the error can be seen at the northern

boundary, inside the domain and in our area of focus, the
error represent about 10% of the total signal. The relative
error (Rerr) integration over the domain gives approximately
a 10.6% error in the Normand‐Breton Gulf.
[50] In this region, the most important tidal harmonics

are M2 and S2. Figure 13 shows the M2 tidal amplitudes
(Figure 13a), the M2 tidal phases (Figure 13b), and the dif-
ferences between those (Figure 13c) and the MARMONDE
model (Figure 13d). As Figure 12 shows, most of the error
can be attributed to the model open boundaries. At the coast,
the model has about 0.2 m error (compare to a 4 m total tidal
amplitude) and about a 5 degrees difference which represent
an error of about ten minutes for the M2 tidal constituent.
The HYCOM‐WD simulations results are in a very good
agreement with the MARMONDE results as these errors
are quite small. The main differences, seen at the bound-
aries, comes from the mass fluxes provided by the MOG2D
model [Carrère and Lyard, 2003], which also has its own
uncertainties.
[51] An harmonic analysis for the tidal wave MS4

(resulting from the nonlinear interaction between M2 and
S2) shows that its amphidromic point, located near the
Guernsey island, is mislocated and shifted compare to the
MARMONDE solution (not shown here). This is due to
the forcing at the boundary which is located very close to
this amphidromic point and also because a fine tuning of
the intensity of the bottom friction is necessary to get
accurate solutions for the MS4 tidal wave.
[52] As the goal of this paper is not to do an exhaustive

and extensive validation of the tide, we have, through the
results presented above, confidence to pursue the tests of
the wetting and drying scheme.

4.3. Wetting and Drying Areas

[53] Figure 14 shows a comparison between the SSH
simulated with the HYCOM‐WD model forced at the

Figure 12. Relative error (equation (22)) in the Normand‐Breton Gulf for the M2 tide.
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boundaries with 14 tidal wave (M2, S2, N2, K2, K1, O1, P1,
Q1, M4, MS4, MN4, 2N2, M3, M6) and the SSH retrieved
from La Chapelle Saint Aubert tide gauge, located close to
the Mont Saint Michel (1°52 W, 48°63 N). The water is
only present at this location when there is large tidal coef-
ficient (e.g., the extreme event on 19 September 1997). The
SSH is mainly influenced by the tidal signal in this area,
although other processes such as atmospheric pressure, can
also have a significant impact and are not taken into account
in our simulations. Figure 14 shows that this area is gen-
erally dry (0 m line) except for a few hours between 15 and
22 September 1997. The amplitude errors can be signifi-
cant, especially on 15 September. These differences can be
explained by peculiar weather (e.g., strong winds) but not
only: the inverse barometer effect, the model resolution and
thus the local topography could also be responsible for those
discrepencies between numerical solutions and observations.
However, there is generally a good agreement between the
simulated amplitudes of the model and those predicted by
the tide gauge. Notice that there is no phase error, and that
the duration for which the tide gauge records the presence of
water is also well reproduced by the model. The evolution

and weakening of this extreme event is also quite well
represented in the model.
[54] Figure 15 presents the whole domain with the per-

manently immersed zones (the height of water is always
higher or equal to 10 cm, white) and areas periodically dried
(gray) for the MARMONDE system and for the HYCOM‐
WD model, respectively. We observe a very good agree-
ment between the two models. In particular, the drying
zones of the islands of Guernsey, Jersey and Chausey
(1°83W, 48°88N) are similarly reproduced in the two
models. The drying zone of the Minquiers plateau (2°13W,
48°97N) is however too large in the HYCOM‐WD, as is the
western extension of the Seine bay. Figure 16 is the same as
Figure 15 but zoomed on the bay of the Mont Saint Michel.
It allows for a better comparison between the two models
results. The black solid curve delimits a zone for which the
height of water remains always strictly positive and delimits
thus the minimal extension of the drying zone. The drying
zone simulated by MARMONDE is within the two zones
delimited by 0 < h < 10 cm in HYCOM‐WD, except for the
channel of the See and Selune rivers (1°59W, 48°69N),
which are not represented in MARMONDE due to its lack

Figure 13. Numerical solutions of HYCOM‐WD for M2 tidal (a) amplitudes and (b) tidal phases in the
Normand‐Breton Gulf area. The M2 differences between HYCOM‐WD and MARMONDE for (c) tidal
amplitudes and (d) tidal phases are also shown.
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Figure 14. Comparison between the HYCOM‐WD simulated SSH (m) (black line) and the SSH (m)
retrieved by tidal gauge observations (red line) at La Chapelle Saint Aubert, near Mont Saint Michel.

Figure 15. Wet area (white) and periodically dry area (gray) simulated by the (left) MARMONDE
model and (right) HYCOM‐WD model. A point is considered periodically dry when its water depth
reaches less than 10 cm during the 15 day simulation between 10 and 25 September 1997.
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of resolution. These results validate the wetting and drying
schemes developed and implemented in HYCOM.

5. Discussion

[55] In this paper, we have proposed numerical schemes
to take into account the wetting and drying processes suit-
able for oceanic circulation models that use finite difference
methods. The numerical schemes are based on existing
schemes, developed to deal with vanishing layers in isopyc-
nic models, with some improvements. Different parameters
have been defined, associated with critical depths, and has
been optimized using Thacker’s exact solutions for para-
bolic basins. Other shapes could yield different parameters,
but we expect weak differences as long as the topography of
the considered region is smooth enough. The critical depths
are based mainly on two crucial parameters: the grid step
and the local slope and is defined as: hc = 2sDx. Since, in
the general case for realistic bottom topographies, our cri-
terion for stability is based on the steepest local slope, an
unsmooth topography will add more constraint to obtain
stability and thus results could be less accurate.
[56] A realistic simulation have been performed in the

Normand‐Breton Gulf area and shows that the wet and dry
areas are very well represented for the case of a strong tide.
[57] This study is also original as it concentrates on the

simulated velocity fields. Those are challenging to get
accurately as their evolution is associated with shocks. Our
study shows that the numerical scheme captures very well
the magnitude of the velocities. The algorithms we have
used have been intensively studied and validated in the
baroclinic case and they are very well known for their
robustness and excellent ratio accuracy/computational effi-
ciency (compare to Godunov methods for example). In this
paper, it has been demonstrated that the proposed numerical
scheme to represent the wetting and drying process con-
serves all those properties.
[58] The wetting and drying scheme mainly acts on the

velocity field by doing some relaxation to it but conserves
mass (and volume). It can thus be coupled with tracer
evolution equations and, provided they are written in flux
form, maintain their conservation properties, which is cru-
cial for long‐term simulations. For the baroclinic case, the
conservation of tracers can be affected by the splitting of the
external and internal mode (this is the case in HYCOM for
instance), but including the present wetting and drying
scheme in a code that conserves tracers can be done while
preserving conservation. This property gives a strong con-
sistency and portability between the algorithm and the
model from a numerical and computational point of view.
[59] Although this work shows some original approach

that could lead to considerable improvements for the finite

difference oceanic general circulation models, the results
can be undoubtedly improved and several factor have to be
considered to achieve more accurate solutions.
[60] 1. As discussed in the paper, for tidal simulations, the

solution chosen at the boundary have a strong impact on the
accuracy of the solution over the whole domain. For non-
linear harmonics, this is also true for small regions, but some
other parameters, in particular the bottom friction, have to
be carefully tuned. In this respect, the barotropic (i.e., one
layer) results we described would probably be improved
using many layers and a more adequate parameterization for
bottom boundary layers.
[61] 2. The precision of the bottom topography is also a

key factor. The bathymetry not only acts on the precision of
the propagation of tidal waves, but also on the bottom slope
which is an essential factor to simulate accurately the local
currents, which eventually act on the wetting and drying
process.
[62] 3. Atmospheric forcing can also play a role in the

surface height evolution, both through direct pressure effects
or the influence of the wind.
[63] 4. The initial condition, and in particular the position

of the sea surface (or a precise knowledge of the mean
surface elevation), is of importance to achieve a good
matching between numerical results and observations.
[64] 5. An increased resolution should also improve the

numerical solutions. In the realistic study, there are only five
grid points between the Mont Saint Michel and the coast,
where the comparison with the tide gauge have been per-
formed. In this case the results are also sensitive to the solid
wall boundary conditions.
[65] The results (i.e., robustness, stability, and accuracy)

we have obtained are encouraging and we believe that the
numerical schemes presented here can be used for realistic
and operational modeling.
[66] Finally, the choice and optimization of the parameters

hc and � could be extended to isopycnic layers when they
encounter bottom topography. Using a baroclinic ocean
would be an interesting experiment to perform since the
time‐splitting mode would affect the conservation of mass
and tracers. This could be compared to Thacker’s solutions
that can easily be extended to stratified cases (the solution
have the same shapes with identical barotropic velocity fields
and isopycnals remaining parallel to the sea surface). The
critical depths in MICOM and HYCOM have been fixed to
10 m whereas results from the present study show that
there should be a strong dependence on the local bottom
gradient and grid step.

[67] Acknowledgments. Sebastien Lahaye is supported by the CEA
(Commissariat à l’Energie Atomique). Flavien Gouillon is supported by

Figure 16. Same as Figure 15 but zoomed in on the Mont Saint Michel area. The black curve delimits
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