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ABSTRACT

The computational cost required by the Ensemble Kalman Filter (EnKF) is much larger than that of
some simpler assimilation schemes, such as Optimal Interpolation (OI) or three-dimension variational as-
similation (3DVAR). Ensemble optimal interpolation (EnOI), a crudely simplified implementation of EnKF,
is sometimes used as a substitute in some oceanic applications and requires much less computational time
than EnKF. In this paper, to compromise between computational cost and dynamic covariance, we use the
idea of “dressing” a small size dynamical ensemble with a larger number of static ensembles in order to
form an approximate dynamic covariance. The term “dressing” means that a dynamical ensemble seed from
model runs is perturbed by adding the anomalies of some static ensembles. This dressing EnKF (DrEnKF
for short) scheme is tested in assimilation of real altimetry data in the Pacific using the HYbrid Coordinate
Ocean Model (HYCOM) over a four-year period. Ten dynamical ensemble seeds are each dressed by 10
static ensemble members selected from a 100-member static ensemble. Results are compared to two EnKF
assimilation runs that use 10 and 100 dynamical ensemble members. Both temperature and salinity fields
from the DrEnKF and the EnKF are compared to observations from Argo floats and an OI SST dataset. The
results show that the DrEnKF and the 100-member EnKF yield similar root mean square errors (RMSE)
at every model level. Error covariance matrices from the DrEnKF and the 100-member EnKF are also
compared and show good agreement.
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1. Introduction

Ensemble-based data assimilation uses Monte
Carlo model simulations in order to derive flow-
dependent forecast statistics and is applied, for in-
stance, in operational weather prediction by the use
of an ensemble forecast. Since the first introduc-
tion of the ensemble Kalman filter in an ocean model
by Evensen (1994), the method has gained consider-
able attention and has also been successfully applied
in meteorology and other research fields (Hamill et

al., 2001; Houtekamer and Mitchell, 2001; Keppenne
and Rienecker, 2002, 2003; Natvik and Evensen, 2003;
Leeuwenburgh, 2005).

Previous studies showed that the ensemble size is
one of the main factors influencing the quality of co-
variance estimates. Natvik and Evensen (2003) em-
phasized that too few members, e.g., less than 60–80,
degraded the performance of the EnKF. Natvik and
Evensen (2003) tried various ensemble sizes from 20
to 100 in a high-dimensional non-linear system. An
ensemble of 100 members was sufficient in their exper-
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iments and in other applications, e.g., Lisæter et al.
(2003). However, running 100 members multiplies the
computational costs by a factor of 100 with respect to
that of a single model run, which prevents use in ap-
plications that are large-scale and/or high-resolution.
To reduce computational costs, we consider the reduc-
tion of the number of ensemble members based on a
hybridation of the Optimal Interpolation (OI) and En-
semble Kalman Filter (EnKF) approaches.

Evensen (2003) proposed a sub-optimal EnKF ap-
proach similar to OI and called this Ensemble Optimal
Interpolation (EnOI). EnOI and EnKF experiments
have been discussed in Wan (2006), which agree with
the findings of the twin experiment by Leeuwenburgh
(2005) and the results of Durand et al. (2003) for the
ability of satellite data assimilation to correct ocean
fields below the mixed layer.

A dynamical ensemble quantifies the model uncer-
tainty but is inevitably limited by a finite ensemble
size, by the approximate definition of model errors (of-
ten limited to errors in the model forcing) and the ini-
tial state errors. The ensemble is thus confined into
a subspace of small dimensions and subject to bias.
One way to compensate for bias is to add perturba-
tions from a subspace of larger dimension to each dy-
namical ensemble member during the model integra-
tion. In the context of ensemble forecasting, Roulston
and Smith (2003) bring forward the so-called “best
member method”, a method for producing ensemble
by “dressing” a single forecast with historical error
statistics. The skills of the resulting hybrid ensembles
in probabilistic forecasts are superior to those of en-
sembles generated statistically around the best guess
forecast. The best member method is applicable to
all types of ensembles, and in particular to ensemble-
based data assimilation techniques.

In this work, we make an initial attempt to apply
the “dressing” idea outside of the numerical weather
ensemble forecasting context, to test its performance
in assimilating realistic data in the Pacific Ocean us-
ing a HYbrid Coordinate Ocean Model (HYCOM). In
the dressing approach following Roulston and Smith
(2003) and Wang and Bishop (2005), the dressing is
done by a dynamical ensemble of the model state and
a static ensemble of observations of the atmosphere.
Due to the lack of comprehensive observations in the
ocean (mostly temperature sections before 1992, sea
surface height anomalies after 1992, and temperature
and salinity profiles after 2000), we rather use a col-
lection of states from a long model integration as the
static ensemble.

Our main motivation is to explore the feasibility,
efficiency and reliability of such an ocean data assimi-
lation scheme. The Dressed EnKF (DrEnKF for short)

experiment is compared to two standard EnKF exper-
iments that use 10 and 100 members, and to the free
running model. The paper is arranged as follows. In
section 2, the DrEnKF method is described. Section 3
gives a brief introduction to the HYCOM model and
the experimental design. In section 4, we discuss the
experimental results. Section 5 gives the conclusions.

2. Dressing the ensemble Kalman filter

2.1 Dressed ensemble generation

Dynamical ensembles are constructed using a for-
ward model integration to quantify the state depen-
dence of the prediction errors. The atmosphere is so
chaotic that it is often sufficient to add small pertur-
bations to the observations assimilated to ensure di-
vergence of the ensemble forecast. In ocean physics,
the temporal scales are much longer and we rather
assume that inaccuracy in an initial snapshot can be
attributed to a displacement of the isopycnal verti-
cal coordinates. We sample the initial ensemble by
perturbing the layer interfaces from a model snapshot
in equilibrium and the initial ensemble is then inte-
grated forward with model errors in the atmospheric
forcing fields to build up the multivariate covariances.
The method for generating perturbations is reported
in Evensen (2003) and Natvik and Evensen (2003).

The seed dynamical ensemble state vectors are
stored in a matrix, also known as the “father” ensem-
ble matrix, with each member denoted as xi ∈ R,

F = (x1, x2, · · · , xM ) ∈ Rn×M , (1)

Here, M is the size of the dynamical ensemble and n
is the model state dimension. We write the ensemble
mean and ensemble anomalies as

Fj = F + F ′j , j = 1, · · · ,M. (2)

The static or stationary ensemble is sampled from
snapshots of a long model run. The static ensemble
matrix is defined as

S = (ψ1, ψ2, · · · , ψN ) ∈ Rn×N , (3)

where N is the number of model snapshots of the
model states. N is an integer multiple of M (i.e.,
N = pM , p>1). The mean and anomaly of the static
ensemble are given as

Si = S + S′i, j = 1, · · · , N. (4)

Then we can define the dressed ensemble by adding
static anomalies to a dynamical ensemble member:

A = [F ′,S′ + F ′∗] ∈ Rn×(N+M). (5)

Here, F ′∗ ∈ Rn×N is is the result of p concatenations
of the matrix F ′, with same total size as S′. The en-
semble S′+F ′∗is called the “daughter” ensemble here.
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The relative weights of the “father” and “daughter”
ensembles are therefore equivalent in the resulting co-
variance matrix. This has been chosen arbitrarily to
ensure their respective variance of Sea Level Anomaly
(SLA) is similar.

2.2 Forecast covariance and analysis scheme

The covariance matrix P e ∈ Rn×n is calculated
using the M + N ensembles as:

P ′
e =

A′(A)T

M + N − 1

=
F ′F ′T + (S′ + F ′∗)(S′ + F ′∗)T

M + N − 1

=
N + M

(M + N − 1)M
F ′F ′T +

1
M + N − 1

S′S′T

+
1

M + N + 1
(F ′∗S′T + S′∗F ′T). (6)

If the dynamic and static anomalies F and S are un-
correlated, we obtain

P e =
(

1− N

M(M + N − 1)

)
P F

e +
N − 1

M + N − 1
P S

e .

(7)
Here, P F

e and P S
e are, respectively, the ensemble co-

variance matrices for the “father” and “daughter” en-
sembles. We expect, therefore, that the DrEnKF has
a larger spread than the small size dynamical ensem-
ble, since a small ensemble tends to underestimate the
variance. The comparison with the large size EnKF is
not a prior. The impacts of cross-terms on the multi-
variate covariances are not obvious.

The observations are perturbed to form an ensem-
ble of observations, with specified observation error
statistics. There are two goals: one is to to the stan-
dard EnKF ensemble update algorithm (Burgers et al.,
1998), the second is to consider the storage in square-
root form of a large observation error covariance ma-
trix R (of size with m×m, the number of observations
m being of the order of 200 000 in our case). We note
two matrices of perturbed observations. The first one
has the dimension of the “father” ensemble

DF = (d1, d2, · · · , dM ) ∈ Rm×M . (8)

The second matrix is the ensemble representation of
R

γ = (ε1, ε2, · · · , εM+N ) ∈ Rm×(M+N). (9)

The size of this ensemble is arbitrary, and we have
chosen the same size as the “daughter” ensemble for
convenience. The approximate observation error co-
variance matrix is

Re =
γγT

M + N − 1
. (10)

We use the standard analysis equation to update the
“father” ensemble only:

F a
j =F f

j + A′A′THT(HA′A′THT + γγT)−1

(DF −HFj), j = 1, 2, · · · ,M . (11)

In the DrEnKF scheme, only the “father” ensemble
F is updated. The static ensemble S is only used to
calculate the forecast covariance and is not updated.
Here, H is the observation operator. The Kalman gain
is defined as

KDrEnKF = A′A′THT(HA′A′THT + γγT)−1 . (12)

The detailed algorithm of the Kalman gain is fol-
lowing the formulation referred as “analysis2” in
Evensen (2004). The perturbed observations intro-
duce sampling errors, particularly for small ensem-
bles (Whitaker and Hamill, 2002). There are num-
ber of square-root implementations proposed (Ander-
son, 2001; Evensen, 2004; Sakov and Oke, 2008). In
this study, we do not experience ensemble collapse
even though the “father” ensemble has very small size
(N = 10). The use of a static ensemble has possibly
prevented the ensemble from collapse. The implemen-
tation of a square root scheme would have been simi-
larly simple and should be evaluated in future work.

2.3 Computational cost

The DrEnKF is implemented here in a way that
saves considerable computational cost. The size of the
“daughter” ensemble N is similar to usual EnKF ap-
plications, but the size of the “father” ensemble M
is smaller, and only the latter is integrated into the
model. The propagation is thus cheaper in the present
implementation of the DrEnKF. Using the analysis
scheme from Burgers et al. (1998) the computational
cost of the analysis is approximately nNN for an N -
member EnKF approach. The update cost of DrEnKF
(M “father” ensemble members, N “daughter” ensem-
ble members) is nM(M + N). If M is much smaller
than N , the update cost of DrEnKF is also reduced.
Hence, from both the model integration and update
aspects, DrEnKF can save computational cost dramat-
ically if we can keep the size of the “father” ensemble
small.

3. Experimental design and preparation

3.1 Model

The data assimilation experiments use a Pacific
Ocean implementation of HYCOM (Bleck, 2002), a
primitive equation, general circulation model with hy-
brid vertical coordinate.
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The model domain covers the area from 28◦S–
52◦N, 95◦E–70◦W. The grid is generated by confor-
mal mapping (Bentsen et al., 1999), and has hori-
zontal resolution between 42 km and 72 km (roughly
half a degree). The present implementation uses 22
hybrid isopycnal and z-level coordinates, the 10 top
layers using a linear increase of density and the last
12 layers an exponential increase. The range of the
potential densities (σ is the potential density in each
layer) varies from 18.00 kg m−3 to 27.84 kg m3. The
model prognostic variables include 3-dimensional tem-
perature, salinity, layer thickness, and velocity, as well
as the barotropic velocity and pressure fields. All prog-
nostic variables are updated within the assimilation
process.

The model is forced by atmospheric forcing
fields from the European Center for Medium-Range
Weather Forecasting (ECMWF) reanalysis. The high-
frequency synoptic forcings used were temperature,
winds, and relative humidity determined from dew-
point temperatures. Clouds and precipitations are
based on the climatology of the Comprehensive Ocean
and Atmosphere Dataset (COADS) and precipitation
from Legates et al. (1990). “Closed” boundaries in
the north and south have their salinities and tempera-
tures relaxed to the Generalized Digital Environmen-
tal Model (GDEM) climatology (Teague et al., 1990),
with a common relaxation time scale of 100 days over
15 grids cells. River input is modeled as a negative
salinity flux, and there are 13 river sources used in the
Pacific simulation.

3.2 Experiment design

We carry out three data assimilation experiments
using the DrEnKF, the 10-member EnKF, and the
100-member EnKF. Both schemes assimilate sea sur-
face height (SSH) over the Pacific Ocean.

The static ensemble of model snapshots is based
on a control run from 1 January 1981 to 31 Decem-
ber 2001, of size N = 100. The seasonality has been
removed from the static ensemble. The dynamical en-
semble is initialized following the optimal sample of
Wan et al. (2008), with 10 and 100 members for EnKF
experiments and 10 for the DrEnKF. We randomly se-
lect 10 members of the static ensemble anomalies and
add them to each dynamical member.

We simulate the model errors affecting the evolu-
tion of the ensemble members by generating random
fields added to the ECMWF atmospheric forcing fields
as outlined in Evensen (2003). The spatial correlation
depends on the given spatial scale (also called decor-
relation scale) and typical grid size, while the tempo-
ral correlation is formed by a Markov process with a
sequence of time-correlated pseudorandom fields with

mean equal to zero and variance equal to 1. The set
up of these errors follows Wan (2006) and detailed pa-
rameters are given in Table 1.

Figure 1 shows the correlation coefficients of SST
relative to the grid point (33◦N, 137◦E) in the main
axis of the Kuroshio Current sampled from the dy-
namical ensemble created by the EnKF experiment
(100 members), the EnKF experiment (10 members),
static ensemble (100 members), and dressed ensemble
(110 members) created by the DrEnKF experiment,
respectively. There are very weak long range correla-
tions from the EnKF experiment using 100 members.
The static ensemble generates more long range cor-
relations than the EnKF. For the 10-member EnKF,
because of the small size of its ensemble, high pseudo
correlations exist in many regions. Once a dressed en-
semble was created, many pseudo correlations disap-
peared, and the magnitude of pseudo correlation be-
comes smaller. However for realistic applications such
as this one, the localization can help to remove re-
maining long range correlations. More discussions of
localization and filtering of long range correlations are
reported by Hamill et al. (2001), Mitchell et al. (2002)
and Oke et al. (2006).

It is necessary to use localization to avoid the prob-
lem caused by obvious long range correlations. It uses
only observations within certain circle around a grid
to update the model state at a given grid point. We
use a local analysis scheme that makes analysis of a
grid point using a maximum of 49 observations within
700 km distance, and this has been applied in both
of the two experiments. The time window of the two
experiments is the same, i.e., from 1 January 2002 to
31 December 2005.

3.3 Data

Observational data used in the assimilation experi-
ments are SSH satellite data sets merged from different
satellites, e.g., TOPEX/Poseidon, Jason-1, ENVISAT,
etc. The spatial resolution of the data sets is (1/3)◦

and the temporal resolution is one week. The data sets
are provided by Collecte Localisation Satellites (CLS).

The temperature and salinity profiles from Argo
floats and Optimum Interpolation Sea Surface Tem-
perature (OISST) (Reynolds et al., 2002) are used to
validate the performances of the two experiments. The
OISST data set is produced at the National Oceanic
and Atmospheric Administration (NOAA) using both
in situ and satellite data, which is weekly on a one-
degree grid. The Argo floats carry out continuous
monitoring of the temperature and salinity from the
sea surface down to 1000 m or 2000 m Carval et
al. (2006). We used all available (17354) tempera-
ture/salinity profiles in delayed mode within the model
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Fig. 1. Sea surface temperature correlation with point (33◦N, 137◦E) on 18 August 2004. (a) 100 members EnKF
experiment, (b) static ensemble of DrEnKF, (c) 10-member EnKF experiment, (d) dressed ensemble of DrEnKF.

Table 1. Parameters in assimilation experiments.

Parameters Description Value

N Number of static members in DrEnKF Experiment; 100
Number of dynamical members in EnKF Experiment 100

M Number of dynamical members in DrEnKF Experiment 10
m Maximum number of local observations 49
r0 Observations radius of influence 700 km
σe Observations error standard deviation 0.05 km
re Observations error decorrelation length 10 km
rh Initial error decorrelation length 1000 km
σd Layer thickness logarithmic standard deviation 10%
σT Temperature logarithmic standard deviation in mixed layer 5%
rvd Vertical correlation coefficient of layer thickness 2.0
rvT Vertical correlation coefficient of temperature 3.0
rβ Decorrelation length of random forcing 10 grid cells
σT Atmospheric temperature standard deviation 3 K
στ Atmospheric wind stress standard deviation 0.03 N m−2

σw Wind speed standard deviation 1.6 m s−1

σr Radiative flux standard deviation 0.2 W m−2

rt Time correlation coefficient parameter of random forcing 3 days
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Fig. 2. RMS errors against OISST and the ensemble
spread (units: ◦C). (a) 10-member EnKF experiment,
(b) 100-member EnKF experiment, (c) DrEnKF experi-
ment. Dashed lines are RMS errors against OISST and
solid lines are the ensemble spread.

domain and the assimilation period. The Argo data
is downloaded from the Argo Data Center. (http://
www.coriolis.eu.org/cdc/dataSelection/cdcDataSelec-
tions.asp)

4. Results

4.1 Overall performance

In this part, we first compare the EnKF error es-
timate against OISST to monitor the evolution of the
ensemble with the Root Mean Square Errors (RMSE).
Figure 2 displays them over the four-year experi-
ment. For both experiments, the ensembles are time-
dependent and the spread is fluctuating. The curves
show no visible trend over four years–neither growing
nor shrinking. The three time series of EnKF and
DrEnKF show a faint seasonal cycle, the error be-
ing slightly larger during winter than summer. The
spread of the 10-member EnKF looks obviously di-
vergent, which leads to an overestimate of the error
background. This cycle appears both in the error

estimate and in the RMS errors, indicating that the
evolution of model errors is realistic. Since the heat
fluxes are dependent on winds, it is also logical that
the model errors are more efficient, and therefore the
ensemble spread of DrEnKF is larger than that of the
100-member EnKF to avoid error underestimate by
the small dynamical ensemble.

The overall performances of the 100-member EnKF
and the DrEnKF are summarized in Table 2. Root
mean square (RMS) errors over the model domain
and experiment time window for the temperature and
salinity fields from the EnKF and the DrEnKF at dif-
ferent model levels are calculated by comparing them
to Argo observations, and the SST is compared to
OISST. Argo floats are inhomogeneous in their spa-
tial and temporal sampling. So, we interpolated the
model results to the locations of Argo floats. The com-
parisons are only computed for the top 14 model lay-
ers because of insufficient observations in deep waters.
While for OISST was originally mapped weekly on a
one-degree grid, we interpolated it’s grid to the model
grid. The RMS errors of the free running model (with-
out assimilation) are also shown.

In the 100-member EnKF experiment, the RMS
error of temperature is reduced by 0.08◦C and that
of salinity by 0.091 psu at the surface, while in the
DrEnKF experiment, RMS error of salinity is reduced
by 0.06◦C and 0.094 psu at the surface. In the surface
layer, the EnKF reduces the errors by 14.2% for tem-
perature and 33.3% for salinity, while the reduction by
the DrEnKF is 10.3% for temperature and 34.8% for
salinity. In the mixed layer, a reduction of temperature
and salinity errors is observed in the both experiments.
Weaker but non-negligible reductions of RMS errors
are observed in the thermocline for both experiments,
indicating that none of the assimilation experiments
have a strong impact in the thermocline, but still tend
to improve the results. It is also comforting that the
assimilation imbalances do not severely affect the sta-
bility of the water column and do interfere with deep
water mass properties. The results of the DrEnKF are
surprisingly close to those of the EnKF.

The evolution of the Root Mean Square Error
(RMSE) over four years of the DrEnKF experiment
and the 100-member EnKF experiment is shown in
Fig. 3. We select three layers: the surface layer (top 3
meters in the model), the model layer with potential
density 24.00 kg m−3 (representative of the bottom of
the mixed layer), and the layer with potential density
27.02 kg m−3 (located below the thermocline). Fig-
ures 3a, c, and e show RMS errors of temperature in
different layers, while Figs. 3b, d, and f are those of
salinity. It is obvious that the RMS errors of temper-
ature and salinity in the two assimilation experiments
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Table 2. RMS errors of temperature and salinity in different layers.

Temperature (◦C) Salinity (psu)

Layer Model EnKF DrEnKF Model EnKF DrEnKF

1∗ 0.564 0.484 0.506 0.270 0.179 0.176
2 0.982 0.930 0.935 0.439 0.391 0.393
3 0.987 0.936 0.936 0.437 0.391 0.393
4 1.001 0.946 0.948 0.439 0.391 0.394
5 1.011 0.967 0.969 0.439 0.393 0.394
6 1.046 1.009 1.008 0.441 0.408 0.408
7 1.124 1.088 1.100 0.456 0.433 0.437
8 1.172 1.141 1.161 0.460 0.443 0.440
9 1.173 1.170 1.172 0.433 0.414 0.417
10 1.215 1.205 1.209 0.360 0.321 0.318
11 1.194 1.181 1.182 0.412 0.369 0.376
12 1.419 1.412 1.416 0.348 0.287 0.296
13 1.341 1.271 1.287 0.248 0.218 0.208
14 0.725 0.674 0.694 0.190 0.176 0.179

Note: *—RMS errors of sea surface temperature are computed against OISST, while other RMS errors of temperature and salinity
are calculated against Argo data. 

  Fig. 3. RMSE of temperature and salinity with time (unit: ◦C and psu) (a) surface temperature,
(b) surface salinity, (c) temperature in the layer (σ = 24.00 kg m−3), (d) salinity in the layer
(σ = 24.00 kg m−3), (e) temperature in the layer (σ = 27.02 kg m−3), (f) salinity in the layer
(σ = 27.02 kg m−3). Black lines are from the free-running experiment, blue lines are from DrEnKF
experiment, and red lines are from EnKF experiment.
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Fig. 4. Standard deviation of SST in EnKF experiment and DrEnKF experiment. The blank
area in the South Pacific is below 0.2◦C (data from 18 August 2004). (a) 100-member EnKF ex-
periment, (b) 10-member EnKF experiment, (c) DrEnKF experiment (dynamical ensmeble), (d)
DrEnKF experiment (dressed ensemble).

are smaller than those of the free running experiment
in the three layers. In the surface and the intermedi-
ate layer (σ = 24.00 kg m−3), the DrEnKF has RMS
errors close to those of the EnKF. During a few pe-
riods, DrEnKF performs even better than EnKF. In
the deep layer (σ = 27.02 kg m−3), the EnKF and
DrEnKF yield the similar RMS errors.

4.2 Specific aspects of the DrEnKF

Figure 4 shows the standard deviation of surface
temperature in different experiments. Figures 4a and
b show the snapshot of the standard deviation of sur-
face temperature in the 100-member and 10-member
EnKF experiment on 18 August, 2004. Figures 4c and
d show the snapshots of the standard deviation of sur-
face temperature in the DrEnKF experiment before
and after dressing (Fig. 4c is for the dynamical ensem-
ble, Fig. 4d is for the dressing ensemble). In Fig. 4b,
the large standard deviation located in more areas in
the North Pacific, which brings an overestimate of the
background errors in these areas. In Fig. 4c, there is
large standard deviation located in Northwest Pacific
and East Equatorial Pacific, while the results of the
“father” ensemble in DrEnKF only show a large spread
only in the Northwest Pacific. After dressing, the lo-
cation of the maximum agrees better, especially along
the East Equatorial Pacific. Moreover, the magnitude

of the ensemble spread is increased. For temperature
and salinity in deep layers, we have also compared the
standard deviation (figures not shown) of the two as-
similation experiments, and found the DrEnKF can
effectively account for residual errors and realize the
time-dependence of error statistics. The DrEnKF re-
produces the large scale correlation structures of SST.
The assimilation of altimeter data improves the water
mass properties only if the multivariate correlations
are physically consistent. The validation we present
in Fig. 4 has not been reported before to our knowl-
edge.

Near the thermocline, Fig. 5 gives a snapshot of
the comparison between ensemble spread and the dif-
ference between ensemble mean and observation. Be-
cause of the sparseness of Argo floats, we select a small
region (10◦S–20◦N, 128◦E–160◦W, which is similar to
the region3 in Wan, 2006) on a typical date (25 Au-
gust 2004) to calculate the RMS errors before and after
assimilation in the 100-member EnKF and DrEnKF
experiments. Ideally, the ensemble spread should be
comparable to the RMS errors. Since the model errors
are only affecting the sea surface, the errors introduced
initially in the interior ocean are difficult to sustain.
Near the surface, the ensemble spread is comparable
to the RMS errors, but between the bottom of the
mixed layer and the thermocline, it is underestimated
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   Fig. 5. Comparison of the ensemble spread and RMS errors before and
after assimilation (25 August 2004). (a) Temperature and (b) Salinity
for EnKF experiment, (c) temperature and (d) salinity for Dressing
EnKF experiment. The black lines are ensemble spread, the purple
lines are ensemble spread after dressing, the blue lines are RMS errors
against Argo data before assimilation, and the red lines are RMS errors
against Argo data after assimilation.

for all methods. The spread is larger in the DrEnKF
than in the EnKF through all the depths, mostly due
to the addition of the spread of the static ensemble.
Therefore, DrEnKF performs with results close to the
EnKF and better than the EnKF sometime. However,
treatment of model errors below the mixed layer is
still a key issue to be focused on in subsequent model
revisions.

5. Conclusions

Two data assimilation experiments (EnKF and
DrEnKF) are compared and assessed against a free
running model experiment. The DrEnKF is a new
attempt stemming from state-of-the-art methodology
in ensemble atmospheric forecasting, intended to save
computing costs and add residual errors. Both meth-
ods assimilate real altimetry data into a HYCOM
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model of the Pacific. The experiments have processed
four years from 1 January 2002 to 31 December 2005.
The results are compared and validated with inde-
pendent observations from remote sensing OISST and
Argo floats.

The idea of a “dressing” ensemble is the combina-
tion of a dynamical ensemble with a small size (here
10 members) and a static ensemble. The aim of the
paper is to evaluate whether this idea could be a way
to reduce the computational costs of the large num-
ber of members required for EnKF. We show that the
DrEnKF is stable over an integration period of 4 years
and reproduces the temporal variations of the error
similarly to the EnKF. It is efficiently projecting the
influence of the assimilated sea surface heights into
the interior of the ocean, although with slightly less
success than a large-membered EnKF. The DrEnKF
avoids the underestimation of errors as expected with
a dynamical ensemble of small size. The analysis of en-
semble spread shows it is able to locate the horizontal
patterns of the error variance as in a large-membered
EnKF, and produces larger ensemble spread than the
large-membered EnKF across the whole basin and at
all observed depths of the ocean. The EnKF and
DrEnKF, however, both underestimate the errors be-
tween the bottom of the mixed layer and the thermo-
cline, which indicates that the addition of a static en-
semble does not necessarily compensate for insufficient
model accuracy, and neither does it compensate for
possible model biases. Further research should there-
fore pursue improvement of model errors and robust-
ness against model biases.

In the present work, the dynamical and static en-
sembles have approximately the same weight and we
have not attempted to tune their respective contri-
butions. There are, however, several ways to gener-
ate a dressing ensemble such that the ensemble spread
matches closely some targeted error statistics. Wang
and Bishop (2005) propose a refinement of the method
based on seasonal statistics that could also be used to
refine this study.
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