Validation Analysis of the 0.72° HYCOM/CICE 4.0 2003-2006 run

Dmitry Dukhovskoy, Pam Posey, Joe Metzger, Alan Wallcraft, and Eric Chassignet

Arctic Study at COAPS FSU

Participant in the International partnership program funded by NSF: Arctic Ocean Model Intercomparison Project (AOMIP).

AOMIP Goals:

(1) Validate and improve Arctic Ocean models in coordinated fashion

- identify the most consistent errors across models
- propose solutions
- select the most reliable and consistent Arctic Ocean / Sea Ice models

(2) Investigate processes using observations and model results

- How to avoid restoring and flux correction?
- Formation of the Arctic Ocean halocline
- Parameterization of stress-driven and convection-driven mixing

(3) Climate change

- 50-year experiment under "observed" forcing and 100-year experiment under reconstructed forcing

AOMIP Models

Institution	AWI	GSFC	UW	NPS	UMASS / WHOI	FSU (ARCc0.72 / ARCc0.08)
Ocean Model	MOM	РОМ	MOM	MOM	FVCOM	НҮСОМ
Ice Coupled	Yes	Yes	Yes	Yes	Yes	Yes
Vertical Levels	Z levels	sigma	30 Z levels	30 Z levels	40 s-layers	32 hybrid
Resolution	>20 km		~22 km	~18 km	1 km shelf ~15 km deep	~30 km / ~3 km
Min Depth			15 m	45 m	5 m	50 m / 10 m

HYCOM/CICE 4.0 Overview

- Developed at NRL coupled HYCOM/CICE application
 - ESMF-based HYCOM provided by NRL-SSC
 - ESMF-based CICE 4.0 provided by LANL
 - All coupling by NRL-SSC
- HYCOM/CICE at NRL
 - Initially for Arctic-only domain and a Bering Sea domain for testing data assimilation
 - Soon for fully global domain

Los Alamos Sea Ice Model (CICE 4.0)

- State of the art sea-ice model
 - Multi-category ice thickness
 - Energy conserving thermodynamics
 - Energy-based ridging scheme
 - Elastic-viscous-plastic (EVP) ice dynamics
- Open Source ice model
 - http://climate.lanl.gov/Models/CICE

HYCOM/CICE ARCc 0.72°

- Run for 2003-2006
- Arctic-only grid is a sub-region of the tripole grid
 - Bottom in the Atlantic, top in the Pacific
- Atlantic and Pacific boundaries
 - Closed (no-ice) in CICE
 - Closed but with relaxation to climatology in HYCOM
- The model coastline is at the 50 m isobath (closing the Bering Strait)
- 3 hourly NOGAPS 0.5° atmospheric forcing fields

0.72° Arctic P-grid DX (km)

HYCOM/CICE ARCc0.08

0.08° Arctic grid resolution (km)

Run for 2005-2008

The model coastline is at the 10 m isobath (Bering Strait open).

3 hourly NOGAPS 0.5 degree atmospheric forcing fields

OBs are forced by the 1/12° global HYCOM

Ocean model is initialized from 1/12° non-assimilative global HYCOM Background: Arctic Ocean

Arctic Ocean Bathymetry (NGDC ETOPO-2)

Arctic Ocean Circulation

WHOI: www.whoi.edu

Temperature, February 250 m, PHC 3.0

GDEM3, Salinity at 3000 m

GDEM-3, S, Mnth=2, Z=-3000

The deep Canadian Basin is saltier than the Eurasian Basin

Analysis of ARCc 0.72° 2003-2006 Run

Near-Surface Temperature, February

HYCOM/CICE ARCc 0.72° grid

2003

2006

ARCc0.72, Yr=2003, T, Mnth=2, Z=-10

Near-Surface Salinity, February

ARCc0.72, Yr=2006, S, Mnth=2, Z=-10

HYCOM/CICE ARCc 0.72° grid 2003 2006

ARCc0.72, Yr=2003, S, Mnth=2, Z=-10

Annual Mean Near-Surface Velocity Field

250 m Fields from HYCOM/CICE ARCc 0.72° HYCOM/CICE ARCc 0.08°

Temperature 250 m, February

ARCc 0.72° grid 2006

PHC 3.0

ARCc 0.08° grid

Salinity 250 m, February

ARCc 0.72° grid 2006

PHC 3.0

ARCc 0.08° grid 2006

ARCc0.08, Yr=2006, S, Mnth=2, Z=-250 ARCc0.08

Depth of the Upper Atlantic Water (Depth of 0° Surface)

ARCc 0.72° grid 2006

PHC 3.0

ARCc 0.08° grid 2006

Arctic Ocean – Greenland – Norwegian Seas cross-section HYCOM/CICE ARCc 0.72°

Salinity, February

GDEM 3

HYCOM/CICE ARCc 0.72°

Temperature, February

-800 -1200 -1600 -2000 -2400 -2800 -3200

GDEM 3

HYCOM/CICE ARCc 0.72°

Salinity, February

GDEM 3

HYCOM/CICE ARCc 0.08°, 2006

Temperature, February

HYCOM/CICE ARCc 0.08°, 2006

GDEM 3

Coupled HYCOM/CICE 4.0 in place

- ARCc0.72: ran for 4 years (2003-2006) initialized using PHC 3.0 (ARCc0.72)
- ARCc0.08: ran for 4 years (2005-2008) initialized using 1/12° Global HYCOM

- Surface and deep water mass distribution modeled in ARCc 0.72° (and 0.08°) is similar to climatology
- In both ARCc 0.72° and 0.08°, the Atlantic layer in the Arctic Ocean is dislocated compared to observations:
 - Atlantic layer is too deep in ARCc 0.72°
 - Atlantic water does not penetrate into the Canadian Basin in ARCc 0.08°

Sea Ice from ARCc 0.08°, 2005-2008

Sea Ice Simulation from HYCOM/CICE ARCc 0.72°

Sea Ice Drift Field

HYCOM/CICE ARCc0.72 grid, 2006

Proshutinsky et al., 2008 www.arctic.noaa.gov/reportcard/ocean.html

Sea Ice Concentration, ARCc 0.72° September 1, 2006

arctic.atmos.uiuc.edu/cryosphere

Distribution of potential T and S along the section

Aaagaard et al., Thermohaline circulation in the Arctic Mediterranean Seas, JGR, 1985

Seasonal Sea Ice Thickness (m)

Winter

Winter Sea ice Thickness, 2003-2006

Summer

Summer Sea ice Thickness, 2003-2006

Seasonal Sea Ice Concentration (m)

Winter

Summer

Winter Sea ice Concentration, 2003-2006

Summer Sea ice Concentration, 2003-2006

Salinity, 10 m, PHC 3.0

February

PHC3.0, S, Mnth=2, Z=-10

August

PHC3.0, S, Mnth=8, Z=-10

28.3 28.9 29.5 30.1 30.7 31.3 31.9 32.5 33.1 33.7 34.3 34.9 35.5 36.1 36.7 28.3 28.9 29.5 30.1 30.7 31.3 31.9 32.5 33.1 33.7 34.3 34.9 35.5 36.1 36.7

Seasonal Signal Simulated in HYCOM/CICE ARCc 0.72°

Seasonal Near-Surface Temperature

HYCOM/CICE ARCc0.72 grid, 2003-2006

PHC 3.0

Summer (JAS), 2003-2006, T field; Z=-10

-2 -1.6 -1.2 -0.8 -0.4 0 0.4 0.8 1.2 1.6 2

Winter

Summer

PHC 3.0 Summer Temp: 10 m

Seasonal Near-Surface Salinity

HYCOM/CICE ARCc0.72 grid, 2003-2006

Winter (MAM), 2003-2006, S field; Z=-10

25 26 27 28 29 30 31 32 33 34 35

Summer (JAS), 2003-2006, S field; Z=-10

Winter

Summer

PHC 3.0 Summer Salt: 10 m

COAPS Plans

- 1) Analysis of 0.72 and 0.08 model runs performed by NRL SSC
- 2) Test runs with ARCc0.72
- 3) Transition to ARCc0.08
- 4) AOMIP coordinated 50-year run of ARCc0.08

Two-way coupled HYCOM/CICE – exchanges fields every 3 hours

- HYCOM uses a 18 minute time step and exports:
 - SST
 - SSS
 - Surface currents
- CICE uses a 45 minute time step and exports:
 - Ice concentration
 - Ice-ocean stresses
 - Actual Freeze/Melt Heat/Salt/Mass Flux
 - Solar radiation at ice base
- ** Runs on three HPC systems: IBM p655+, SGI Origin 3900 and Cray XT3

Stand-alone vs Coupled

- Stand-alone
 - CICE has simple bulk ocean mixed layer Relaxes to climatological SST and SSS Calculates an ice-ocean stress, based on zero ocean currents
 - HYCOM treats sea-ice as an "energy bank"
 - No ice advection
 - No ice-ocean stress (wind stress applied directly to the ocean)
- Best possible coupling:
 - HYCOM's ocean CICE's sea-ice
 - Ice-Ocean Stress identical in HYCOM and CICE
 - Ice-Ocean Fluxes identical in HYCOM and CICE
- Actual 2-way coupling:
 - Ice-Ocean Stress identical in HYCOM and CICE
 - Similar, but not identical, Ice-Ocean Fluxes
 CICE's SST strongly relaxed to HYCOM SST
 HYCOM's sea-ice concentration strongly relaxed to CICE sea-ice concentration
 - Fields exchanged every 3 hours

Global Tripole Grid

- Arctic dipole patch on standard Mercator globe
- This tripole grid has many good properties
 - Rectilinear grid south of the Arctic patch
 - Grid aligned with the equator
 - Same resolution in Arctic and Antarctic if Arctic patch starts about 47N
 - relatively smooth transition across the patch boundary
- The "full" tripole grid contains all locations twice
 - Just as a "full" periodic domain contains all locations an infinite number of times
- Global: use the lower copy of each location
 - Logically rectangular arrays
 - Needs a special halo exchange on the top edge
 - -- Includes a sign change for v-velocity
 - -- Some points still included twice (both copies must be identical consistency check)

Mean Horizontal Velocity Across Fram Strait

HYCOM/CICE ARCc0.72 grid, 2006

POP model, 1978

Salinity, February 250 m

GDEM3

GDEM-3, S, Mnth=2, Z=-250

28.3 28.9 29.5 30.1 30.7 31.3 31.9 32.5 33.1 33.7 34.3 34.9 35.5 36.1 36.7

PHC 3.0

PHC3.0, S, Mnth=2, Z=-250

Temperature, 10 m, PHC 3.0

5.6 6.2

5

2.6 3.2 3.8 4.4

February

PHC3.0, T, Mnth=2, Z=-10

2

-2.2 -1.6 -1 -0.4 0.2 0.8 1.4

August

-2.2 -1.6	-1	-0.4	0.2	0.8	1.4	2	2.6	3.2	3.8	4.4	5	5.6	6.2

Near-Surface Temperature, August

HYCOM/CICE ARCc 0.72° grid 2003 2006

Near-Surface Salinity, August

HYCOM/CICE ARCc 0.72° grid 2003 2006

ARCc0.72, Yr=2003, S, Mnth=8, Z=-10

ARCc0.72, Yr=2006, S, Mnth=8, Z=-10

Initial Field: Temperature at 250 m, January

HYCOM/CICE ARCc 0.72 grid

ARCc0.72 Initial T, Mnth=1, Z=-250

Initial Depth of the Upper Atlantic Water (Depth of 0° Surface)

Initial Field, ARCc 0.72, June

ARCc0.72 Initial Atl. Water Depth, Mnth=6

-580 -540 -500 -460 -420 -380 -340 -300 -260 -220 -180 -140 -100 -60 -20

PHC 3.0, June

-580 -540 -500 -460 -420 -380 -340 -300 -260 -220 -180 -140 -100 -60 -20