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a b s t r a c t

The relationship between various atmospheric variables at the sea surface and climatological monthly
means of sea surface temperature (SST) is investigated over the global ocean. The goal is to quantify
the change in SST that results solely from variations in a particular atmospheric variable. This is accom-
plished using a series of numerical simulations from an atmospherically-forced ocean general circulation
model (OGCM). It is first demonstrated that SST variations at all latitudes are generally strongly and pos-
itively correlated with increases in near-surface air temperature, and vapor mixing ratio and net short-
wave radiation at the sea surface, while they are often moderately and negatively correlated with
increases in near-surface wind speed. There is only a weak and negative relationship between variations
in SST and those in net longwave radiation at the sea surface. Variations in the net shortwave radiation
and vapor mixing ratio are found to have more influence in driving the seasonal cycle of SST than other
atmospheric variables. Global averages of slope values from the least squares fit indicate that a 1 �C
change in air temperature results in �0.2 �C change in SST. Similarly, a 1 g kg�1 change in vapor mixing
ratio gives �0.4 �C change in SST, and 10 W m�2 change in shortwave (longwave) radiation results in
�0.13 �C (�0.07 �C) change in SST. All these values vary regionally, and are neither constant nor in the
same direction everywhere. In addition, some atmospheric variables are already correlated to each other.
Therefore, a fractional factorial design which involves the joint effects of all atmospheric variables on SST
at the same time is further applied. Results from the factorial design are somewhat consistent with the
simple linear regression analysis, in that a 2 �C increase in air temperature can typically give an increase
in SST, generally ranging between 0.5 and 0.8 �C over the global ocean.

Published by Elsevier Ltd.
1. Introduction and motivation

Spatial and temporal variability of sea surface temperature
(SST) is closely related to the substantial heat content of the ocean
mixed layer, which itself is largely influenced by atmospheric con-
ditions near the sea surface (e.g., Chambers et al., 1997; Boccaletti
et al., 2004; Willis et al., 2004; Du et al., 2005). This is due largely to
the fact that the oceanic mixed layer gives rise to small scale var-
iability with longer persistence times than the variability associ-
ated with such scales in the atmospheric boundary layer (e.g.,
Stull, 1988). Atmospheric variables at/near the sea surface (e.g.,
net solar radiation wind speed, etc.) play substantial roles in driv-
ing the seasonal variations in SST.

The major focus of this study is to quantify the relationship be-
tween atmospheric variables and SST, given the fact that mecha-
nisms by which climatological variations in SST are tied to
atmospheric forcing are poorly understood. For example, a few
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modeling investigations (Palmer and Sun, 1985; Barnston, 1994;
Kushnir and Held, 1996) and observational studies (Cayan, 1992)
examined the the influence of atmospheric variables on SST, but
did not investigate the relationship between the two over the glo-
bal ocean. Some other studies applied the heat flux as a forcing
function (e.g., Eden and Willebrand, 2001; Gulev et al., 2003,
2007) in investigating the role of SST in ocean climate simulations
but did not specifically explore impact of individual atmospheric
forcing variables on seasonal variability of SST. Kara et al.
(2009a) explored effects of various near-surface atmospheric vari-
ables in controlling the seasonal cycle of climatological SST over
the global ocean, but they did not provide any quantitative results.

The relationship between atmospheric variables and SST is of
importance to both observational researchers and climate model-
ers (e.g., ocean and coupled atmosphere-ocean modelers) for vari-
ous applications. In particular, an ocean modeler would be
interested in knowing which atmospheric variable may result in
the largest deficiencies in model-simulated SST, and should there-
fore pay specific attention to its accuracy before using it for a mod-
el simulation. This is due to the fact that atmospheric forcing
products have their unique biases over the global ocean (Rienecker
et al., 1996; Trenberth and Caron, 2001).

mailto:birol.kara@nrlssc.navy.mil
mailto:alan.wallcraft@nrlssc.navy.mil
mailto:alan.wallcraft@nrlssc.navy.mil
mailto:harley.hurlburt@nrlssc.navy.mil
mailto:loh@stat.wisc.edu
mailto:loh@stat.wisc.edu
http://www.7320.nrlssc.navy.mil
http://www.sciencedirect.com/science/journal/14635003
http://www.elsevier.com/locate/ocemod


44 A.B. Kara et al. / Ocean Modelling 29 (2009) 43–57
In this paper, the relationship between a given atmospheric var-
iable and SST is addressed by answering the question, ‘‘how much
variation in a given atmospheric variable (e.g., net shortwave radi-
ation) results in a quantitative change in SST (e.g., 1 �C). Regions
where large/small SST changes resulted from a particular atmo-
spheric variable are mapped over the global ocean. This is done
using an OGCM. Our hypothesis is that variations in climatological
monthly mean SSTs are largely determined by atmospheric vari-
ables in ocean model simulations that are performed with no
assimilation of or relaxation to any SST data.

Accordingly, the paper is organized as follows. A brief descrip-
tion of the OGCM and simulations from the model are given in Sec-
tion 2. The procedure for analyzing the relationship between
atmospheric variables and SST is introduced in Section 3. Results
are demonstrated at selected individual locations in Section 4
and over the global ocean in Section 5. A fractional factorial design
study for the model SST errors is presented in Section 6. Conclu-
sions of the paper are given in Section 7.
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Fig. 1. Basin-wide variations of (a) mean heat flux and (b) mean SST as obtained
from the 0.72� global HYCOM for the seasonal cycle and long-term mean.
2. Ocean model

2.1. HYCOM description

The HYbrid Coordinate Ocean Model (HYCOM) includes a large
suite of physical processes and incorporates numerical techniques
that are optimal for dynamically different regions of the ocean. It
contains five prognostic equations: two for the horizontal velocity
components, a mass continuity or layer thickness tendency equa-
tion and two conservation equations for a pair of thermodynamic
variables, such as salt and potential temperature or salt and poten-
tial density (Bleck, 2002).

The model behaves like a conventional r (terrain-following)
coordinate model in very shallow oceanic regions, like a z-level
(fixed-depth) coordinate model in the mixed layer or other
unstratified regions, and like an isopycnic-coordinate model in
stratified regions. The optimal coordinate is chosen every time step
using a hybrid coordinate generator. The ability to adjust the ver-
tical spacing of the coordinate surfaces in HYCOM simplifies the
numerical implementation of several physical processes, such as
mixed layer detrainment, convective adjustment, etc, making it a
candidate to investigate SST variations over the global ocean.

The HYCOM domain used in this paper spans the global ocean
from 78�S to 90�N. It has a 0.72� equatorial Mercator grid between
78�S and 47�N, with an Arctic bi-polar grid north of 47�N, but with
latitudinal resolution doubled near the equator. The model has
0.72� � 0.72� cos (lat) (longitude � latitude) resolution on a Merca-
tor grid. There are 26 hybrid layers in the vertical. The atmospheric
forcing is discussed in Section 2.2. Monthly mean temperature and
salinity from the Generalized Digital Environmental Model, version
3 (GDEM3) climatology (Carnes, 2009) are used to initialize the
model. The simulations use realistic bottom topography with the
model boundary at the 50 m isobath. The K-Profile Parameteriza-
tion (KPP) mixed layer submodel of Large et al. (1997) is used in
the simulations.

The model includes computationally efficient bulk heat flux
parameterizations for latent and sensible heat fluxes which include
stability-dependent exchange coefficients (Kara et al., 2005a). Be-
cause there is no relaxation to any SST climatology, most effects
of atmospheric variables are taken into account through net sur-
face energy balance in the model (Kara et al., 2005b). This further
confirms the appropriate use of an atmospherically-forced model
(i.e., with no oceanic data assimilation) in exploring the relation-
ship between atmospheric variables and SST. Note that the SST sea-
sonal cycle is also influenced by various dynamical processes, such
as atmospheric advection and oceanic upwelling (Sutton and Allen,
1997; Scott, 2003; Wang and Chang, 2004). However, our hypoth-
esis is that these processes are also related to the atmospheric
atmospheric variables, i.e., the ocean model (i.e., HYCOM) takes
these effects into account in the upper ocean with the mixed layer
submodel, finally resulting in a SST.

2.2. Atmospheric forcing and model simulations

The model was first run for 5 years until statistical equilibrium
was reached and then extended for another four years. Our experi-
ence is that four model years is enough to equilibrate SST, primar-
ily because this is a direct response to the atmospheric forcing. For
example, there is almost no difference between the monthly mean
SST from year 5 and year 9 of the standard forcing case. As an
example, we ran the model for about 25 years, demonstrating al-
most no changes in the mean of basin-averaged net heat fluxes
and SST over the global ocean (Fig. 1).

Climatological monthly means of atmospheric forcing variables
were formed from the 1.125� � 1.125� European Centre for Med-
ium-Range Weather Forecasts (ECMWF) 40-year re-analysis over
the years 1979–2002 (Uppala et al., 2005). For example, the Janu-
ary mean is the average of all Januaries from ERA-40 from 1979 to
2002. A climatological mean correction is applied to some fields
obtained from ERA-40 to improve their accuracy. Winds are im-
proved by using the satellite winds (QuikSCAT) as described in
Kara et al. (2009b). Zonal and meridional components of wind
stress are then computed following Kara et al. (2007). A high fre-
quency component is added to the climatological winds, i.e., the
wind forcing includes 6-h variability added to the monthly means
(e.g., Kara et al., 2005c). This variability is added because the mixed
layer is sensitive to sub-monthly changes in surface forcing down
to time scales of a day or less. A correction for shortwave and long-



Table 1
Descriptions of atmospheric forcing variables used for HYCOM simulations. Annual
mean represents the average of climatological monthly mean values from ERA-40.

Simulation Atmospheric forcing used for the ocean model simulation

Monthly Monthly mean atmospheric forcing for each variable
Airtemp The same as simulation 1 but annual mean airtemp
Precip The same as simulation 1 but annual mean precip
Vapormix The same as simulation 1 but annual mean vapormix
Shortwave The same as simulation 1 but annual mean shortwave
Longwave The same as simulation 1 but annual mean longwave
Windspd The same as simulation 1 but annual mean windspd
Annual Annual mean atmospheric forcing for each variable

Fig. 2. Climatological annual (long-term) mean SSTs as obtained from the NOAA OI
climatology during 1971–2000. The numbers (1–6) on the map mark the six
locations that will be used in the analysis in Section 4.
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wave fluxes from ERA-40 is made using data from the International
Satellite Cloud Climatology Project (ISCCP) (Rossow and Zhang,
1995). Precipitation at the sea surface is corrected using data from
the Global Precipitation Climatology Project (GPCP) (Adler et al.,
2003).

Description and units of these atmospheric forcing variables are
as follows: air temperature (airtemp) at 10 m above the surface
(�C); precipitation (precip) (m s�1); mixing ratio (vapmix) of air
at 10 m above the surface (g kg�1); net shortwave radiation (short-
wave) at the surface (W m�2); net longwave radiation (longwave)
at the surface (W m�2); wind speed (windspd) at 10 m above the
surface (m s�1); and wind stress (N m�2).

We would like to investigate changes in the model SST resulting
from changes in atmospheric variables, and quantify these changes
for each variable, separately. Thus, eight simulations which are
twins of the standard simulation are used (Table 1). The standard
HYCOM simulation was performed using the monthly means of
six atmospheric variables. Each of the other simulations is identical
to the standard one except that the climatological annual mean of a
chosen atmospheric variable (calculated from the 12-monthly
means at each model grid) is used. For example, as shown in Table
1, one simulation was performed with climatological annual mean
of air temperature and with monthly means for all other atmo-
spheric parameters given in the table. This simulation is denoted
as ‘‘airtemp” to indicate that it is the twin of the standard monthly
simulation but uses ‘‘annual mean air temperature”. The same
explanation applies to the other simulations. In all simulations,
wind stress forcing in the momentum equation is left alone pre-
cisely because it dominates ocean dynamics, such as ocean cur-
rents. When we use annual mean wind speed, there is some
inconsistency in separating wind speed and wind stress, but the
same is true to some extent when we hold any single atmospheric
field at its annual mean.

None of the simulations discussed in this paper include oceanic
data assimilation except for weak relaxation to monthly sea sur-
face salinity from Polar Science Center (PSC) Hydrographic Clima-
tology (PHC) (Steele et al., 2001). This relaxation is designed to
keep the evaporation-precipitation balance on track in the model.
All model results presented in the following sections are based
on monthly means that were constructed from the last year of
the simulations.
3. Data and methodology

3.1. Monthly SST bias from the model simulations

We first examine the accuracy of SSTs obtained from each HY-
COM simulation given in Table 1. For validations, monthly mean
SSTs from HYCOM are formed from daily model outputs, and com-
pared to those from National Oceanic and Atmospheric Adminis-
tration (NOAA) optimal interpolation (OI) climatology (Reynolds
et al., 2002). The NOAA climatology is based on in situ and satellite
SSTs. Climatological mean SST from this product is shown in Fig. 2.
The NOAA climatology is specifically chosen for model evaluations
because its resolution (1� � 1�) is close to that of HYCOM. The
NOAA SSTs are interpolated to the model grid for model-data
comparisons.

Monthly mean bias is computed by subtracting NOAA SSTs from
HYCOM SSTs at each grid point over the global ocean. The resulting
SST biases (i.e., HYCOM–NOAA) are shown for months of February,
August and November (Fig. 3a–c). These months are just chosen for
illustrative purposes. Note that in all maps, regions where ice ex-
ists (shown in gray) are excluded from the analysis, because our
major focus is SST rather than ice. The ice-free regions are deter-
mined from an ice-land mask from the NOAA ice climatology.
The mask is a function of the ice analysis and changes by month.
For simplicity, in all panels we use the same climatological mask,
which is the mask of maximum ice extent.

The standard HYCOM simulation, which is forced with monthly
means of atmospheric variables, gives the smallest SST bias,
including for all individual months (Fig. 3). Relatively large SST
biases exist in the regions where western boundary currents are lo-
cated because the resolution of the model used in this paper is not
sufficient to resolve these current systems. Otherwise, HYCOM SST
errors are within ±0.5 �C over the majority of the global ocean.
When the model is forced with the annual mean of any particular
atmospheric variable and monthly means for others, SST bias typ-
ically increases. For example, there are large biases for the simula-
tions of vapormix, shortwave and longwave. Such biases, in part,
reveal the impact of that particular atmospheric variable in simu-
lating the seasonal cycle of SST. There are clearly spatial variations
in SST errors. When comparing results for the month of August
from the standard monthly simulation with the simulation that
uses the annual mean of shortwave radiation, the latter simulates
model SST that is too cold (by >2 �C) at high northern latitudes,
including both the Pacific and Atlantic Oceans. For this reason,
shortwave radiation can play a significant role in driving the sea-
sonal cycle of SST in those particular regions.

In the bottom panels of Fig. 3, the model SST errors compared to
the NOAA climatology are from the simulation forced with annual
means of all atmospheric variables. This is the worst case, as one
would expect. SST biases are consistent; in other words, there
are warm (cold) biases in the northern hemisphere winter (sum-
mer) and vice versa in February and August. The simulation forced
with the annual mean of all atmospheric variables yields nearly
constant SST with almost no seasonal variation at a given location.



Fig. 3. Monthly mean SST bias (HYCOM–NOAA) for the climatologically-forced model simulations (see Table 1) in comparison to the NOAA SST climatology.
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This result is a necessary condition for the approach used in this
study. Here, one or more atmospheric variables is held to the an-
nual mean, while the remaining include the climatological sea-
sonal cycle.

3.2. Procedure for the analyses

In addition to the monthly mean SST values, annual and
monthly means of atmospheric variables will be used in the anal-
ysis. The monthly SST values are constructed from HYCOM simula-
tions forced with either the monthly or annual mean of a given
atmospheric variable, a combination that is varied in different
model simulations (Table 1). The atmospheric forcing variables
are from ERA-40 interpolated to the 0.72� model grid. Based on
the analysis procedure below, we first examine the possible rela-
tionship between each atmospheric variable and SST (e.g., air tem-
perature versus SST, precipitation versus SST, vapor mixing ratio
versus SST, etc.) at a few individual locations (Section 4). The same
analysis is then extended to the global ocean (Section 5). The steps
for the analysis procedure are as follows:

(1) Monthly mean SSTs from each climatologically-forced
HYCOM simulation are obtained at each model grid point
over the global ocean. As described in Table 1, these simula-
tions are labeled as monthly, airtemp, precip, vapormix,
shortwave, longwave, windspd and annual. The monthly
simulation is the standard experiment, as defined in Table 1.

(2) SST differences between a simulation that uses the annual
mean of a given atmospheric variable and monthly means
otherwise and the standard monthly simulation are then
calculated. For example, monthly mean SSTs from the stan-
dard simulation are subtracted from those obtained from the
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airtemp simulation for each month over the seasonal cycle
(i.e., from January to December). This process yields 12
monthly mean SST difference values at each grid point.
The same procedure is repeated for other simulations.

(3) The monthly mean of each atmospheric variable used for the
standard model simulation is extracted at each model grid
point over the global ocean over the seasonal cycle.

(4) Similarly, the annual mean of each atmospheric variable is
obtained based on the monthly mean values at each model
grid point.

(5) Differences between annual and monthly values of each
atmospheric variable are formed. For example, the climato-
logical annual mean of air temperature is subtracted from
the monthly mean of air temperature. This means that the
same annual mean air temperature value at a given model
grid point is subtracted from the monthly means from Janu-
ary to December, yielding 12 mean atmospheric forcing dif-
ference values at each model grid. The same procedure is
repeated for other atmospheric variables.

A notable point here is that the climatological mean SSTs from
the standard monthly HYCOM simulation are being treated as rep-
resentative of the truth. This is confirmed by the analysis presented
in Section 3.1 which discusses the accuracy of HYCOM SSTs in com-
parison to NOAA climatology (see Fig. 3). Using the same standard
atmospheric forcing in HYCOM simulations and switching to the
annual mean of a single atmospheric variable at a time allows us
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to explore the relationship between the single atmospheric vari-
able versus SST in a consistent way.

3.3. Linear regression

In Sections 4 and 5, linear regression will be used to examine
the relationship difference between atmospheric variables differ-
ences (annual-monthly) and SSTs differences obtained from two
HYCOM simulations: one forced with the annual mean of a given
variable with monthly means for other variables and the other
with monthly means of all variables (Table 1). We provide only a
brief description of linear regression analysis as used in this study.
A more extensive summary can be found in Neter et al. (1988) and
Wilks (1995).

We will evaluate time series of differences in atmospheric vari-
ables and SST over the seasonal cycle at every ice-free point on the
global model grid. The statistical relationships between monthly
mean differences in atmospheric variables (X) and those in SST
(Y) are expressed as follows:

R ¼ 1
n� 1

Xn

i¼1

ðXi � XÞ ðYi � YÞ=ðrX rY Þ; ð1Þ

Y ¼ aþ bX þ c ð2Þ

where n ¼ 12, R is the correlation coefficient and XðYÞ and rXðrYÞ
are the means and standard deviations of atmospheric variables
(SST) values, respectively. In the regression Eq. (2), Y is the
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dependent variable, X is the independent variable (or covariate), a is
the intercept, b is the slope or regression coefficient and c is the
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error term. The regression equation will specify the average magni-
tude of the expected change in SST for the given variation in atmo-
spheric variable. The strength of the linear relationship between
differences in SST and atmospheric variables is determined by the
R value (see (1)), which ranges from �1 to 1. An R value of �1 (1)
indicates a very strong negative (positive) linear relationship, and
an R value of 0 indicates no linear relationship.

In the analyses, we do not remove the seasonal cycle from the
time series. Taking out the seasonal effects from each variable
and then testing the correlation of the residuals answers a different
question, which is not the focus of this paper. In other words, we
are not investigating whether the two variables (SST and a given
atmospheric variable), are uncorrelated after the seasonal effects
are removed. The question we would like to answer is ‘‘how much
change in SST, on average, results from a unit change in a given
atmospheric variable?” The problem lies with the statistical signif-
icance of the estimated slopes, which we obtain by testing the
significance of the correlations.
4. Relationship between atmospheric variables and SST

To demonstrate the analysis procedure, we apply steps (1)
through (5) discussed in Section 3.1 and the statistical analysis
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are obtained by subtracting the annual mean of a given atmospheric variable from
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presented in Section 3.2 at selected locations. Atmospheric vari-
ables (climatological monthly and annual means) and monthly
mean SSTs obtained from the different HYCOM simulations are ob-
tained at six locations. These point locations are chosen to repre-
sent various geographical regions of the global ocean (Fig. 2). The
same analysis procedure will then be used in Section 5 to obtain
more general results over the global ocean.

There are strong seasonal variations in atmospheric variables
evident at (20�S, 070�E) as seen from (Fig. 4). This point is marked
as location 4 in the southern Indian Ocean (Fig. 2). The largest
changes in SST are noted when the model is forced with annual
mean wind speed and monthly means of other atmospheric vari-
ables. Not surprisingly, the Indian Ocean generally experiences
the northeast and southwest monsoons. The northeast monsoon
(e.g., winter) is characterized by steady but moderate winds, while
the southwest monsoon (summer) is characterized by strong
winds. Shallow and deep ocean mixed layer formation typically re-
sults from such changes in wind speed in the upper ocean in this
region (Kara et al., 2003). Relatively high wind speeds depress
SST year around compared to the weak annual mean which occurs
because the relatively strong winds reverse direction over the sea-
sonal cycle. Thus, wind speed at this specific location is the most
important atmospheric variable in driving the SST variations.

Because there is strong seasonal variability in the atmospheric
forcing, HYCOM forced with the annual mean of all atmospheric
variables (airtemp, precip, vapormix, shortwave, longwave and
wind speed) gives very unrealistic SSTs in comparison to the stan-
dard simulation using the monthly mean of all atmospheric forcing
variables (Fig. 5). The SST from the standard HYCOM simulation
agrees remarkably well when compared to the satellite-based
NOAA SST climatology. At this location, the RMS SST difference
for the standard all monthly (all annual) simulation with respect
to the NOAA SST climatology is 0.26 �C (2.70 �C) over the seasonal
cycle.

There are also large changes in SST when the model is forced
with the annual mean of vapormix, shortwave and wind speed as
opposed to the standard monthly simulation. For instance, in the
case of the model simulation using annual mean wind speed, there
is a systematic warm SST bias (�2 �C) in comparison to the stan-
Table 2
Statistics between differences in atmospheric variables and SSTs over the seasonal cycle. Lin
regression analysis, as described in Section 3.2, are given. Differences in atmospheric variab
in SSTs are obtained from the HYCOM simulation forced with the annual mean of a given v
using all monthly mean atmospheric forcing. The reader is referred to Section 3.1 for deta

Airtemp (�C/�C) Precip (�C/m s�1) Vapormix (�C/g kg�1

Correlation
1: (00�N, 145�W) 0.81 0.00 0.73
2: (10�S, 110�W) 0.72 0.45 0.65
3: (30�N, 075�W) 0.92 �0.35 0.95
4: (20�S, 070�E) 0.85 0.57 0.87
5: (35�N,145�E) 0.89 0.03 0.84
6: (45�S, 180�E) 0.88 �0.71 0.89

Slope
1: (00�N, 145�W) 0.26 0.00 0.24
2: (10�S, 110�W) 0.16 0.00 0.23
3: (30�N, 075�W) 0.15 0.00 0.31
4: (20�S, 070�E) 0.16 0.00 0.32
5: (35�N, 145�E) 0.14 0.00 0.29
6: (45�S, 180�E) 0.20 0.00 0.50

Std. error
1: (00�N, 145�W) 0.06 0.00 0.07
2: (10�S, 110�W) 0.05 0.00 0.09
3: (30�N, 075�W) 0.02 0.00 0.03
4: (20�S, 070�E) 0.03 0.00 0.06
5: (35�N, 145�E) 0.02 0.00 0.06
6: (45�S, 180�E) 0.03 0.00 0.08
dard monthly simulation. Net shortwave radiation at the sea sur-
face has a large seasonal cycle. The difference in monthly and
annual shortwave radiation values is 80 W m�2 (�80 W m�2) in
January (July), and the HYCOM simulation using the annual mean
shortwave radiation gives a warm (cold) SST bias of 1 �C when
forced with annual mean shortwave radiation and monthly means
for other variables.

When there is almost no difference between annual and
monthly mean shortwave radiation values in March and Septem-
ber, HYCOM gives the same SST value, as expected. The main point
here is that while both shortwave radiation and wind speed have
large seasonal variations, the simulated SST from the model using
annual mean shortwave radiation and wind speed with monthly
means for other variables are not very similar. This indicates that,
for example, a 1 �C warming or cooling in SST in comparison to the
standard simulation does not result from the same percentage
change in the atmospheric variable. Quantifying such changes in
SST with respect to the different atmospheric variables will be
our major focus.

Time series of monthly and annual mean atmospheric variables
and model-simulated SSTs obtained using those variables pre-
sented at (20�S, 070�E) in Fig. 4 demonstrate that there could be
a simple linear relationship between atmospheric variables and
SSTs. For example, when annual mean air temperature is colder
(warmer) than the monthly mean air temperature for a given
month, SSTs simulated by HYCOM forced with the annual mean
of air temperature and monthly mean for other variables are typi-
cally colder (warmer) than those obtained from the standard
monthly simulation at both locations. The similar explanation also
applies to the mixing ratio and shortwave radiation.

For the reasons mentioned just above, we now investigate
whether or not the difference (annual-monthly) in atmospheric
variables are linearly correlated to the difference (annual-monthly)
in model-simulated SST over the 12-month period. In other words,
using the time series (20�S, 070�E) from the left and right columns
in Fig. 4, we simply form differences of atmospheric variables and
SSTs for each month over the seasonal cycle. This process is re-
peated at the five other locations from Fig. 2.
ear correlation coefficients, slope and standard error for coefficients obtained from the
les are calculated using annual and monthly means over the seasonal cycle, and those
ariable with monthly means for other variables and the standard HYCOM simulation
ils of the calculation procedure.

) Shortwave (�C/W m�2) Longwave (�C/W m�2) Windspd (�C/m s�1)

�0.27 0.48 �0.69
0.79 0.37 �0.69
0.87 0.81 �0.91
0.85 0.55 �0.75
0.68 0.83 �0.71
0.72 0.52 �0.70

�0.003 0.018 �0.30
0.011 0.003 �0.24
0.011 0.013 �0.27
0.011 0.009 �0.26
0.007 0.014 �0.21
0.013 0.011 �0.25

0.004 0.010 0.10
0.003 0.002 0.08
0.002 0.003 0.04
0.002 0.004 0.07
0.002 0.003 0.07
0.004 0.006 0.08
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Scatter diagrams of SST differences versus atmospheric variable
differences are shown in Fig. 6 for each model simulation forced
with the annual mean of airtemp, precip, vapormix, shortwave,
longwave and windspd with monthly mean variables for others,
separately. An elliptical pattern of SST differences in relation to
several types of atmospheric differences is evident at some loca-
tions. Hysteresis in the SST response to the atmospheric forcing
is evidence of some lag in response, which is neglected in this
analysis.

For each case in Fig. 6 we would like to find the best straight line
through the differences in atmospheric variables and SST. Thus, the
least squares fit is also plotted at each location. Except for precip-
Fig. 7. Spatial variations of (a) correlation coefficient and (b) intercept. Results are provid
squares approach.
itation, there is generally a strong linear relationship between dif-
ferences in atmospheric variables and SST at all locations. The
strong linear relationship is particularly evident from the large cor-
relation values given in Table 2, explaining that most of the vari-
ance (e.g., >60%) in SST differences is explained by the
differences in atmospheric variables, especially for airtemp, short-
wave and windspd.

Because a simple linear relationship holds between atmo-
spheric variables and SST differences, the slope of the least squares
line provides useful information about the value of SST difference
resulting from differences of the (annual-monthly) atmospheric
variables. For example, slope values for SST versus atmospheric
ed for each atmospheric forcing variable. Both (a) and (b) are obtained from the least
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variable differences are 0.011 �C/W m�2 and 0.32 �C/g kg�1 for sim-
ulations using the annual mean shortwave radiation and annual
mean vapor mixing ratio with respect to the standard monthly
simulation at (20�S, 070�E). These values are based on the least
squares fits (Table 2). Based on these slope values, a difference of
100 W m�2 (3 g kg�1) between monthly and annual net shortwave
radiation (vapor mixing ratio) values results in a SST difference of
�1 �C. The assumption here is that SST differences from HYCOM
are solely controlled by the shortwave radiation and vapor mixing
ratio differences for each case.

Unlike other variables, differences in wind speed result in neg-
ative but strong correlations with those in SST (Fig. 6 and Table 2).
A slope value of �0.26 �C/m s�1 at (20�S, 070�E) reveals that an in-
crease of 1 m s�1 between monthly and annual mean wind speed
gives a decrease of �0.26 �C. Standard error for the slope values
are usually very small, and can be negligible for most forcing
variables.

5. Regression between atmospheric variables and SST

Discussions in the preceding section reveal that there is usually
a strong linear relationship between atmospheric forcing variables
and SST at six locations. Here, we extend the same analysis to
investigate if such relationships also exist over the global ocean.
Regression analyses are performed under the assumption that dif-
ferences in SST are mainly controlled by the differences in a given
atmospheric variable. The analysis procedure is already outlined in
Section 3.2 (items (1) through (5)). Thus, we use the 12 monthly
mean values for air temperature differences and SST differences
at each grid point. The dependent (independent) variable is differ-
ences in SST (atmospheric variable). Correlation values, intercepts
and slopes of the least squares fit are then obtained.

We first find correlation coefficients between the time series of
monthly differences for a given atmospheric variable and those for
SST when the model is forced with the annual mean of that partic-
ular atmospheric variable. This process is repeated at each model
grid point for each simulation. We then form a map of correlations
over the global ocean (Fig. 7a). Intercept values obtained from the
regression analysis are also given (Fig. 7b). In general, there are
strong correlations between the differences in atmospheric vari-
ables and SST except for precipitation (Fig. 7a). For airtemp there
are large positive correlation values but for precip correlations
are generally close to zero.

We use a sign test to assess the statistical significance of the dis-
tribution of positive and negative values of the correlation coeffi-
cients at roughly equally-spaced points over the global ocean.
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Fig. 8. Zonal averages of correlation values shown in Fig. 7. Note that correlation
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There is a 0.5 probability that the estimated correlation (or slope)
at any grid point is positive and a 0.5 probability that it is negative.
Let N be the total number of grid points and T the number of posi-
tive estimated slopes. For large values of N (as we have here) and at
the 0.05 level of significance, the null hypothesis is rejected if
jT � 0:5Nj > 0:98
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. For example, to test whether the correlations
for airtemp and precip are significantly different from zero, we ap-
ply the sign test to the correlation values in each map. The null
hypothesis that there is zero correlation is rejected if the result is
significant. Almost 99.3% and 60.8% of the correlation values are
positive for airtemp and precip, respectively. Accordingly, correla-
tion values are found to be statistically significant for both airtemp
and precip, but the relationship is very weak for the latter as evi-
dent from small values.

The largest correlations exist between SST and three atmo-
spheric variables: air temperature, vapor mixing ratio and short-
wave radiation. Global averages of correlations are 0.85, 0.86 and
0.78, respectively. For these three variables, correlation values
are almost the same at all latitude belts (Fig. 8). Therefore, their
impacts in driving the seasonal cycle of SST are generally similar.

When regression analyses are performed between the time ser-
ies differences of air temperature differences versus SST differ-
ences, vapor mixing ratio versus SST and longwave radiation
versus SST, intercept values are zero or nearly zero over almost
all of the global ocean (Fig. 7b). There is no correlation between
monthly mean SST and precipitation differences since they are
not statistically different from the zero correlation over most of
the global ocean. Therefore, the linear regression analysis for pre-
cipitation versus SST is meaningless.

Correlation coefficients between differences in wind speed and
those in SST are typically negative with a globally-averaged value
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Fig. 9. Zonal averages of intercept values shown in Fig. 7.
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of �0.58. At first, having such a negative relationship between
wind speed and SST differences seems to look strange, but note
that intercept values are generally large (Fig. 7b), often larger than
±0.5 �C especially at the mid-latitudes. In particular, wind speed is
the only variable whose monthly and annual mean differences re-
gressed against differences in SST usually give a non-zero intercept
at all latitudes over the global ocean (Fig. 9). It is not surprising that
stronger wind speeds produce cooler SSTs since latent heat flux is
usually negative and it increases in magnitude with high wind
speeds. Also stronger winds would tend to give deeper mixed layer
depths and hence again cooler SST.

By far the most important important parameter obtained from
linear regression analysis is the slope, which gives change in SST
difference per variations in atmospheric variables (Fig. 10). When
we assume that differences in model-simulated SST result only
from differences in air temperature (i.e., airtemp), given that slope
values are 0.15 �C/�C over most of the global ocean, we can indicate
that 1 �C in air temperature results in�0.15 �C change in SST. How-
ever, the same amount of variation in the air temperature gives
smaller variations (<�0.10 �C) in equatorial regions and larger
changes (<�0.20 �C) in SST at mid-latitudes (Fig. 11).

The inverse of slope values is helpful for identifying the change
in a given atmospheric variable required to yield a 1 �C warming or
cooling in SST (Fig. 12). For example, in general, >100 W m�2 differ-
ence between annual and monthly mean shortwave radiation is
needed to obtain a 1 �C SST change in tropical regions. Here, it must
be noted that because correlation (intercept) values are very high
(near zero) over most of the global ocean (Fig. 7a and b), the slope
values give us quite a precise estimation of the SST change result-
ing from air temperature, vapor mixing ratio, shortwave and long-
wave radiation (see Table 2).
Fig. 10. Spatial variations of slope values obtained from the least squares analysis (see Fi
are as follows: airtemp (�C/�C), precip (10�9 � �C/m s�1), vapormix (�C/g kg�1), shortwav
In the case of vapor mixing ratio, it is evident from Fig. 10 that
a 1 g kg�1 difference in vapor mixing ratio gives �0.4 �C change in
SST at mid- to high-latitudes, but the change in SST obtained from
the same vapor mixing ratio difference of �1 g kg�1 is halved,
generally �<0.2�, in tropical regions, especially the western equa-
torial Pacific warm pool. The slope values for shortwave radiation
are generally between 0.12 and 0.18 �C/W m�2 in mid- to high-
latitudes where the intercept of the least squares line is also rel-
atively large in comparison to the other latitudes (Fig. 9). How-
ever, there are relatively smaller slope values in the equatorial
Pacific, Atlantic (<0.004 �C/W m�2) and most of the Indian Ocean
(<0.010 �C/W m�2), where the intercept values are generally close
to zero. In the equatorial Pacific, a 1 W m�2 (100 W m�2) differ-
ence in net shortwave radiation yields only �0.004 �C (�0.4 �C)
difference in SST, in comparison to �0.015 �C (�1.5 �C) change
at mid- to high-latitudes. The global average of the slope is
<0.013 �C/W m�2.

As demonstrated in Fig. 9 earlier, intercept values between dif-
ferences in longwave radiation and SST are approximately zero at
all latitudes. Not surprisingly, slope values are thus almost uni-
form, having a globally averaged value of <0.007 �C/W m�2, which
is about half that of the shortwave radiation (Fig. 10). This confirms
that net shortwave radiation at the sea surface has much more
influence on the SST seasonal cycle than net longwave radiation
at the sea surface. This is especially true in open ocean regions.
One should also notice that the relationship between differences
in longwave radiation and SST is not as strong as the one between
differences in shortwave radiation and SST, as confirmed by corre-
lation values (Figs. 7a and 8). Thus, we do not have the same con-
fidence in the linear relationship between longwave radiation and
SST as one has between shortwave radiation and SST.
g. 7). Note that color bars have different scales for each panel. Units for slope values
e (�C/W m�2), longwave (�C/W m�2) and windspd (�C/m s�1).
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In the relationship between wind speed and SST differences,
slope values are usually negative (Fig. 10), consistent with negative
correlations (Fig. 7a). If there had been a perfect linear relationship
with negative slope between the two, we would have had a corre-
lation coefficient of�1. Very high correlations (��0.8) exist only in
some regions just north of equator. However, they are not statisti-
cally significant in comparison to a correlation value of �0.7. On
the other hand, since the correlation values are larger than 0.53,
they are statistically different from a zero correlation. In this situ-
ation, the slope value is ��0.2 �C/m s�1 between 40�S and 40�N
(Fig. 11), i.e., 1 m s�1 increase (decrease) in near-surface wind
speed results in �0.2 �C cooling (warming) in SST, in general.

Wind speed is the only variable whose slope is almost constant in
comparison to the other variables (airtemp, vapormix, shortwave
and longwave) over the most of the global ocean. However, one is
cautioned that the intercept is indeed large over most of the global
ocean (Fig. 7b). For instance, the slope (intercept) value is��0.1 �C/
m s�1 (��0.5 �C) in the latitude belt near 40�N. The intercept is cer-
tainly dominant, making the slope a little useless. In this case, a
10 m s�1 difference in climatological mean monthly and annual
mean wind speed, which is quite unusual over the global ocean,
gives a 1 �C change in SST simulated by the ocean model forced with
monthly means for all variables versus the annual mean of wind
speed and monthly means for other variables. Since the intercept
(i.e.,��0.5 �C) is large, the slope does not describe the actual change
in SST properly as expected from correlation values, which are rela-
tively smaller than those for airtemp, vapormix and shortwave.

Slope values given in Fig. 10 are unique for each atmospheric
variable as seen from their units. For example, in the 40� latitude
belt, a 1 �C warming in SST results from �5 �C change in near-sur-
face air temperature, �75 W m�2 change in net shortwave radia-
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Fig. 11. Zonal averages of slope values shown in Fig. 10.
tion at the sea surface, and �200 W m�2 change in net longwave
radiation at the sea surface between annual and monthly mean
values (Fig. 12). However, what is not clear from these values is
whether or not the �5 �C-change in near-surface air temperature
is as large (or important) as the �75 W m�2-change in net short-
wave radiation at the sea surface, both of which give the same
1 �C-change in SST. Thus, if one were to examine the impact on
SST differences due to per unit differences in atmospheric variables
in a fair way, one possibility would be to normalize slope values.

We normalize slope values with the RMS difference calculated
between annual and monthly mean of each atmospheric variable
over the seasonal cycle, separately. RMS difference at a given loca-
tion is obtained between monthly and annual mean (repeated 12
months) time series (e.g., see left panels in Fig. 4). For each vari-
able, the slope value (Fig. 10) is then multiplied by the RMS differ-
ence at each model grid point. Finally, the SST difference by each
normalized atmospheric variable is obtained (Fig. 13). As an exam-
ple, for the shortwave radiation at the sea surface, RMS (W m�2)
multiplied by slope (�C/W m�2) is in �C. Similarly, for the near-sur-
face vapor mixing ratio, RMS (g kg�1) multiplied by slope (�C/
g kg�1) is again in �C.

Relatively large (small) RMS � slope values are generally seen at
mid- to high-(tropical) latitudes for each variable, especially for
airtemp, vapormix and shortwave (Fig. 13). There are almost no
changes in SST (almost zero) resulting from changes in precipita-
tion over the global ocean, confirming that essentially, this variable
has no major influence in driving the SST seasonal cycle. While
Fig. 12 reveals large SST changes due to longwave radiation, espe-
cially at high southern latitudes, the relatively smaller normalized
SST difference values reveal the minor impact of this variable in
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Fig. 12. The same as Fig. 11 but the inverse of slope values are given to demonstrate
how much change in a given atmospheric variable results in 1 �C warming (or
cooling) in SST over the seasonal cycle.



Fig. 13. RMS � slope values over the global ocean. As described in the text, RMS is calculated between monthly and annual means of each atmospheric variable over the
seasonal cycle, and slope values are given in Fig. 10. Global averages of RMS � slope values are 0.31, 0.01, 0.45, 0.63, 0.11 and 0.15 �C for airtemp, precip, vapormix, shortwave,
longwave and windspd, respectively.
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maintaining the SST seasonal cycle. The largest RMS � slope values
are evident for the shortwave radiation case over the most of glo-
bal ocean.
6. Fractional factorial design for SST changes

In Section 5, we examined the change in SST from using
monthly versus annual mean of one atmospheric variable at a time.
Only one atmospheric variable is changed at a time. We now pres-
ent the results of a fractional factorial design study, where one or
more atmospheric variables are altered simultaneously with the
change for each one being a constant increase for all months and
all grid points.

The fractional factorial design consists of a total of eight cases as
described in Table 3. In each case, the monthly mean of an atmo-
spheric variable is increased at each grid point by a constant
amount which is chosen randomly as will be explained below in
more detail. The increments are given in the columns of the table,
with 0 indicating no increase. For example, in the case of Set 1, the
monthly means of atmospheric variables shortwave and longwave
are increased by 30 and 60 W m�2, respectively, while the monthly
Table 3
Fractional factorial design for HYCOM simulations. In the table, a ‘‘0” indicates that ther
Precipitation values are in units of 1� 10�8.

Simulation Airtemp (�C) Precip (m s�1) Vapormix (g kg�1)

Set 1 0 0 0
Set 2 2 0 0
Set 3 0 1 0
Set 4 2 1 0
Set 5 0 0 1
Set 6 2 0 1
Set 7 0 1 1
Set 8 2 1 1
means of the other four variables are not increased. Such an anal-
ysis is known as a two-level fractional factorial design (Box et al.,
2005).

Fractional factorial designs are suitable to study the joint effects
of many variables using a small number of experiments. There are
six atmospheric forcing variables in Table 3. Hence in the present
situation, there are 2 � 2 � 2 � 2 � 2 � 2 ¼ 64 ways to in-
crease or not increase the monthly means of the atmospheric vari-
ables. A complete examination would require a total of 64 case
experiments. Such a study allows estimation of the individual ef-
fects of all six variables, as well as all sorts of interactions among
them. Following standard statistical terminology, we will call the
individual effects as the main effects. As is the case in our situation
here, if the increments in the variable values are not large, the
interaction effects will typically be dwarfed by the main effects.
A fractional factorial design uses this argument to reduce the num-
ber of cases to a total of eight. The eight combinations in Table 3
are selected, so that the main effects of the six variables can be
estimated. Furthermore, they allow the construction of a model
for the combined effects of any or all of the variables.

Various particular values of the increments in Table 3 are cho-
sen, so that the change in SST is physically realistic even when
e is no change in the value of the specific variable (i.e., the monthly mean is used).

Shortwave (W m�2) Longwave (W m�2) Windspd (m s�1)

30 60 0
0 0 0
0 60 2.5

30 0 2.5
30 0 2.5

0 60 2.5
0 0 0

30 60 0
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all the variables are increased simultaneously. If the increase in
each variable is expected to yield a 1 �C-increase in SST, then the
simultaneous increase in all variables may produce an increase in
SST of up to 6 �C, an unrealistically large value. The listed incre-
ments for each variable in Table 3 are based on the results in Sec-
tion 5. Our aim is to allow each variable to produce approximately
a 0.4� change in SST. This suggests, for example, a 2 �C increment
for airtemp, and a 30 W m�2 increment for shortwave. In each col-
umn of the table, there are only two different values, with four of
each type. For example, under the airtemp column, there are four
values of 0 (meaning no increase in airtemp) and four values of
2, which indicates an increase of 2 �C in airtemp.

Unlike the analysis in Section 5, where one atmospheric vari-
able is held constant by replacing the monthly means with an an-
nual mean at each grid point, the cases in Table 3 allow us to
construct the following simple statistical model between SST dif-
ferences and atmospheric variable monthly mean values for each
month and grid location:

SSTdiff ¼ b1 T þ b2 P þ b3 V þ b4 Sþ b5 Lþ b6 W : ð3Þ

Here SSTdiff ¼ SST� SST�, where SST is the value when one or more
atmospheric variables are increased, and SST� is the value from the
standard all monthly simulation (where all variables are un-
changed), T = (airtemp increase)/2 �C, P = (precip increase)/10�8

m s�1, V = (vapormix increase)/1 g kg�1, S = (shortwave increase)/
Fig. 14. Spatial variability of increase or decrease in SST based on the b coefficients shown
in the text, in detail. Note that unlike all the other atmospheric variables, in the case of
increase.
30 W m�2, L = (longwave increase)/60 W m�2 and W = (windspd in-
crease)/2.5 m s�1. The values of b1; b2; . . . ; b6 are the main effects of
the variables at each grid point and each month. They are calculated
by fitting a least-squares regression model to the values of the SST
differences from the eight simulation experiments. Each b-coeffi-
cient thus estimates the change in SST at a particular grid point
and month, if the associated atmospheric variable is increased by
the amount used in the simulation.

All coefficients of b1; b2; . . . ; b6 resulting from Eq. (3) reveal dis-
tinct variations over the global ocean (Fig. 14). Results are provided
for the three specific months of February, August and November to
demonstrate seasonal differences. Other months yield similar val-
ues (not shown). For example, a 2 �C increase in airtemp can typi-
cally produce a 0.5–0.8 �C increase in SST. Precipitation has almost
no influence on SST and typically yields values close to zero. Sim-
ilarly, a 1 g kg�1 increase in vapmix can give up to a >1.0 �C in-
crease in SST.

In the case of wind speed, the resulting b6 coefficients are
negative over most of the global ocean. This is similar to the neg-
ative slope values for windspd given in Fig. 10. Note that in the case
of the wind speed plot, for consistency we use the same color pal-
ette but values must be multiplied by �1. Based on that plot, a de-
crease of 2.5 m s�1 in windspd gives an increase of �1.0 �C in
tropical regions and at mid-latitudes, and smaller values at other
locations.
in Eq. (3). The fractional factorial design, which is used for this analysis, is explained
windspd values in the color palette demonstrate a decrease in SST rather than an



Table 4
Maximum and minimum values of b-coefficients from the HYCOM simulations.

b1 b2 b3 b4 b5 b6

Airtemp (�C) Precip (m s�1) Vapormix (g kg�1) Shortwave (W m�2) Longwave (W m�2) Windspd (m s�1)

Minimum �0.7978 �1.3248 �1.1616 �0.7292 �1.1483 �1.6362
Maximum 1.8704 1.6747 2.2183 1.8021 3.0453 0.7541
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Table 4 gives the minimum and maximum values of the b-coef-
ficients over all months and all grid points. They demonstrate, for
example, that a 2 �C increase in airtemp can produce up to a
1.87 �C increase in SST and a 0.80 �C decrease in SST. Similarly, a
1 � 10�8 m s�1 increase in precip gives up to a 1.67 �C increase in
SST and a 1.32 �C decrease in SST.
7. Conclusions

Simulations from a global atmospherically-forced OGCM (HY-
COM) with 0.72� resolution and no data assimilation or relaxation
to any SST climatology are used to quantify the effects of atmo-
spheric variables at/near the sea surface on monthly mean SST
changes over the global ocean. HYCOM includes a realistic mixed
layer sub-model, which properly takes physical and dynamical
processes in the upper ocean into account, making it a candidate
to explore the relationship between SST and atmospheric variables.
Model-simulated SSTs from HYCOM with the prescribed atmo-
spheric forcing for the model are analyzed.

Two methodologies were applied to investigate the impacts of
various atmospheric forcing variables on SST: (1) linear regression
analysis and (2) fractional factorial design. A set of eight simula-
tions was run for the application of each methodology, a different
set for each one. The strategy in applying the first methodology
was to run (a) one simulation using a monthly mean climatology
for every atmospheric forcing variable, (b) six simulations where
the annual mean was used for one of the six atmospheric forcing
variables and the monthly mean of all the others was used and
(c) a simulation where the annual mean of all six thermal forcing
variables was used. In all of the simulations a monthly mean wind
stress climatology was used as forcing in the momentum equation.
Thus, the last simulation included only dynamical effects on the
seasonal cycle of SST, such as upwelling and advection, which were
generally small in the 0.72� model. The accuracy of SST from each
simulation was evaluated in comparison to a satellite-based clima-
tology over the global ocean. To use the regression in testing SST
sensitivity to each atmospheric forcing variable individually, the
annual mean of each forcing variable, e.g. shortwave radiation,
was subtracted from the monthly mean at each model grid point
and the monthly mean SST from the simulation in group (b), where
that forcing variable was held constant, was subtracted from
monthly mean SST in simulation (a). The resulting monthly atmo-
spheric forcing and SST deviation time series were then used in the
regression to calculate slope and intercept values at each model
grid point over the global ocean.

Linear regression analysis reveals that �1� change in SST re-
quires a 6 �C change in air temperature, 3 g kg�1 in air vapor mix-
ing ratio, 80 W m�2 in shortwave radiation and 150 W m�2 in
longwave radiation. We find almost no changes in SST due to
changes in precipitation over the global ocean, indicating that this
particular atmospheric variable does not play any significant role
in controlling the seasonal cycle of monthly mean SST. All of these
sensitivities vary regionally and relatively low sensitivity is found
in tropical regions. In particular, monthly variations in atmospheric
variables have significant influences on the climatological mean
SST over the seasonal cycle, except in the tropical oceans where
dynamical effects can be important (Kara et al., 2009a).
Unlike other atmospheric variables considered in this study, cor-
relations between time series of SST deviations and wind speed devi-
ations over the seasonal cycle are typically weak over most of the
global ocean. The linear regression analysis demonstrates that a
1 m s�1 increase (decrease) in wind speed gives a negligibly small
SST cooling (warming) of �0.15 �C. Thus the direct impact of wind
speed in driving the SST seasonal cycle cannot be determined be-
cause of those low correlations.

While the results from the regression analysis provided useful re-
sults, it explored possible relationships between SST and a given
atmospheric variable. As a result, it did not include the joint effects
of atmospheric variables in controlling the SST seasonal cycle over
the global ocean. Therefore, another methodology, a fractional facto-
rial design which allows for nonlinear relationships between SST and
atmospheric variables, was also used. In this approach, changes in
SST are expressed as functions of changes in all atmospheric vari-
ables. The SST error analysis in relation to atmospheric variables
based on the fractional factorial design are typically consistent with
those based on the simpler least squares approach. This indicates
that the model generally responds to changes in atmospheric vari-
ables in a linear fashion in predicting SST variability over most of
the global ocean.
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