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A B S T R A C T
High-resolution models can reproduce mesoscale dynamics and the variability in the Gulf of Mexico (GOM), but
cannot provide accurate locations of currents without data assimilation (DA). We use the computationally cheap
Ensemble Optimal Interpolation (EnOI) in conjunction with the Hybrid Coordinate Ocean Model (HYCOM) model
for assimilating altimetry data. The covariance matrix extracted from a historical ensemble, is three-dimensional and
multivariate. This study shows that the multivariate correlations with sea level anomaly are coherent with the known
dynamics of the area at two locations: the central part of the GOM and the upper slope of the northern shelf. The
correlations in the first location are suitable for an eddy forecasting system, but the correlations in the second location
show some limitations due to seasonal variability. The multivariate relationships between variables are reasonably
linear, as assumed by the EnOI. Our DA set-up produces little noise that is dampened within 2 d, when the model is
pulled strongly towards observations. Part of it is caused by density perturbations in the isopycnal layers, or artificial
caballing. The DA system is demonstrated for a realistic case of Loop Current eddy shedding, namely Eddy Yankee.

1. Introduction

The dynamics in the Gulf of Mexico (GOM) are dominated by
the powerful northward Yucatan Current flowing into the semi-
enclosed basin composed of the resident Gulf Common Water
(GCW). The Yucatan Current Water (YCW) originates from
tropical regions, and is warmer and more saline than the GCW.
This current forms a loop (called the Loop Current, LC) and
exits through the Florida Straits, becoming the Gulf Stream. At
irregular intervals (Vukovich, 1988; Sturges and Leben, 2000)
the LC sheds large eddies that propagate westwards across the
GOM. These eddies can be problematic for the offshore indus-
try operating in the northern shelf of the GOM because large
velocities are located at their fronts, and accurate forecasts of
their fronts are needed.

Many models are able to reproduce the dynamics of the area
and its variability (Oey et al., 2005b), but they cannot provide
accurate forecasts of mesoscale current features without obser-
vations. Indeed, the eddy shedding involves a rapid growth of
non-linear instabilities (Cherubin et al., 2005b), and these are dif-
ficult to forecast (Chassignet et al., 2005; Kantha et al., 2005b;
Oey et al., 2005a). A procedure called data assimilation (DA)
computes the most likely model state given a dynamical model
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and a set of measurements. Altimetry data provide a good rep-
resentation of the mesoscale variability in the GOM away from
the coast and can be used for DA.

In the case of low dimensional linear dynamical systems, the
DA problem is solved by standard techniques like the Kalman
Filter (Kalman, 1960), or the adjoint methods. However, in real
geophysical applications the system is non-linear and the as-
sumptions of non-biased and Gaussian variables do not apply.
Advanced DA methods, like the Ensemble Kalman Filter and
Smoother (EnKF/EnKS; Evensen, 2006) and four-dimensional-
variational methods (Bennett, 2002) are successful with nonlin-
ear systems using computational costs of about 100 times those
of the forward model. It is worth noting that these advanced
DA methods rely on unbiased and multivariate Gaussian error
statistics.

In the GOM, high-resolution models are needed to resolve the
mesoscale dynamics, and computer intensive DA methods are
still out of reach. Among the sequential Optimal Interpolation
(OI) DA methods, the one developed by Cooper and Haines
(1996) is widely used (Chassignet et al., 2005).

Cooper and Haines (1996) use a translation-invariant covari-
ance, based on the geostrophic balance. It applies a vertical
rearrangement of water parcels without modifying their tem-
perature, salinity and potential vorticity. The method conserves
the water masses and maintains geostrophy in simple cases, for
example, far from continental shelves or from regions of strong
baroclinic flow.
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In the GOM, the fronts of the LC and associated eddies have
a clear signal in the sea surface height (SSH). These fronts gen-
erally distinguish the YCW from the GCW. Thus, DA should
modify temperature and salinity accordingly with SSH within
each isopycnal layer. For this purpose, the Multivariate Opti-
mum Interpolation (MVOI; Cummings, 2005) applies Cooper
and Haines (1996) method and corrects the vertical temperature
and salinity in the water column using the modular ocean data
assimilative system (MODAS; Fox et al., 2002). The MODAS
computes temperature at depth from sea level anomaly (SLA) us-
ing stored regressions of climate anomalies of temperature and
dynamic height. Salinity is then computed from the synthetic
temperature. The quality of the vertical projection depends on
the sampling of the observations used in the climatology. We pre-
fer a relationship that depends on the quality of the dynamical
model.

Hence, an OI scheme devised from the EnKF computes the
analysis in the space spanned by a stationary ensemble of sam-
pled model state (e.g. during a long model integration). This
approach is called the Ensemble OI (EnOI; Oke et al., 2002;
Evensen, 2003). The EnOI assumes that temporal variability is
representative of the forecast error. This assumption is strong
and is surely not always satisfied, but one can expect the up-
dates to be statistically valid over a large number of updates.
In the GOM, it is likely that both the temporal variability and
the forecast error are dominated by the position of the LC and
associated eddies, and therefore the EnOI should be suited. Oke
et al. (2005) have demonstrated the EnOI for an eddy-resolving
problem of the Australian region.

Other methods obtain their error covariance from a historical
ensemble, such as the fixed-basis singular evolutive extended
Kalman Filter (SEEK; Brasseur and Verron, 2006). The main
differences with the EnOI are the reduction of the ensemble by
empirical orthogonal functions (EOFs), and a post-processing
step inspired by Cooper and Haines (1996).

Oey et al. (2005a) have tested the forecasting capability of a
method similar to the EnOI in the GOM. However, it is interest-
ing to analyse the multivariate properties of the EnOI considering
known processes of the area, and to assess the veracity of the
multi-Gaussian hypothesis, which is assumed in the EnOI. We
use statistical analysis tools (e.g. scatterplots, wavelet analysis)
that are not widespread in the oceanographic DA community.
Those are also applicable to other ensemble-based DA methods.

The outline of this paper is as follows. The DA system is
presented in Section 2. It outlines the theory of the EnOI in Sec-
tion 2.1, followed by a description of the measurement system
in Section 2.2, and of the dynamical model in Section 2.3. The
multivariate error statistics computed from the historical ensem-
ble are presented in Section 3, for two characteristic locations
in the GOM. A localization technique that removes the spurious
long-range correlation, is presented in Section 3.3. The EnOI
is tested during the shedding of Eddy Yankee, with a focus on
the multivariate consistency of the update (in Section 4.1), on

the accuracy of the forecast (in Section 4.2) and on the conser-
vation of the model balance (in Section 4.3). Discussions and
conclusions are given in Section 5.

2. Data assimilative system

A DA system finds the best model estimate, given a dynamical
model and measurements. Its accuracy depends on the skill of
the forward model, the number and the quality of the measure-
ments, and on the methodology that combines the two sources
of information considering their respective error statistics.

2.1. The ensemble optimal interpolation

The DA problem consists of accommodating the model equa-
tions with measurements. As a deterministic problem, it is
overdetermined and generally has no solution. Indeed, neither
the model forecast nor the measurements are fully correct, and
stochastic errors for the forecast (ε) and the measurements (ϒ)
are introduced into the system as

d = Hψ t + ϒ (1)

and

ψ f = ψ t + ε, (2)

where d depicts the measurements, ψ f the model forecast, ψ t

the true state and H the measurement operator relating the prog-
nostic model state to the measurements.

The problem then becomes underdetermined and has in-
finitely many solutions. It is assumed that the distributions of
the measurement errors (ϒ) and the forecast error (ε) are Gaus-
sian and non-biased. The precise condition is a multi-Gaussian
hypothesis, which requires a Gaussian distribution for each vari-
able, and a linear relationship between all variables (Bertino
et al., 2003). Under these assumptions, it becomes possible to
calculate a least-square estimate ψ a, which minimizes the dis-
tance to ψ t.

In the EnKF, the model covariance matrix is computed at each
assimilation step using a Monte Carlo method, whereas in the
EnOI, it is stationary and calculated from a historical ensemble
as

εεT ≈ α

N − 1
A′A′T, (3)

where A′ is the centered historical ensemble (i.e. A′ = A − A),
and A is the historical ensemble composed of model states. Here,
the overbar denotes ensemble averaging or expected value. N
is the ensemble size. However, an ensemble of model states
sampled over a long time period may have a large seasonal,
or interannual variance, which is inadequate to represent the
instantaneous forecast error variance, therefore a scaling factor
α (∈ (0, 1]) is introduced.
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Similarly, we sample the measurement error covariance ma-
trix as

ϒϒT ≈ 1

N − 1
TTT. (4)

To obtain realistic correlations, two conditions are necessary:

(1) The variability of the ensemble of state should be repre-
sentative of the instantaneous forecast error ε.

(2) The multivariate relationships should be linear.

These particular points will be analysed in the following Section
3. The classical Kalman Filter equation is solved as

ψ a = ψ f + αA′A′THT
(
αHA′A′THT + TTT

)−1
(d − Hψ f ). (5)

The analysis equations can be rearranged as

ψ a = ψ f + αA′x, with x ∈ RN, (6)

meaning that ψ a is a combination of centered model states from
the ensemble added to the forecast ψ f . It implies that the updates
are three-dimensional and multivariate. The dynamical balance
of the model is preserved as long as the model is linear, and thus
relies on weak non-linearity of the model. Note that increasing
α is equivalent to reducing the observation error.

2.2. Measurements

Near real-time altimetry observations of the ocean are achieved
by combining data from numerous satellites. The altimetry data
in the GOM provide a useful indication of the main circulation
and are suitable for DA (Chassignet et al., 2005; Oey et al.,
2005a). Altimetry data show clearly the LC and associated anti-
cyclonic eddies, smaller cyclonic eddies and small vortices that
are found closer to the shelf area.

The SLA data used for assimilation are the maps provided by
Ssalto/Duacs on a 1/3◦ Mercator grid (Le Traon et al., 2003).
Maps are processed from the full cycle of multiple altimeter
missions (Jason–1, Envisat, GFO), and are available in near
real-time, delayed by one week. They are obtained by time and
space interpolation of the along tracks, which include data that
are 3 d posterior to the date of the map, and tides are removed
using a tidal model, see Ducet et al. (2000).

However, altimetry data are inaccurate close to the coast on
the one hand because they are polluted by land measurements,
and on the other hand because of imperfections in the tidal model
used. We have thus selected measurements only in water deeper
than 300 m, which corresponds in the GOM to area 50 km away
from the coast.

The measurement error distribution for altimetry can be con-
sidered as Gaussian. The standard deviation of the measure-
ments is assumed to be constant, and we use the average value
specified by the provider in the GOM area (3 cm). The maps
are interpolated in space, and therefore the measurement errors
are spatially correlated. The space and time inhomogeneity of

Fig. 1. Mean SSH of TOPAZ3 interpolated into the high-resolution
local model grid delimited by the grey box.

the tracks data makes the real mapping error covariance spa-
tially non-stationary, and thus impossible to model with simple
two-dimensional function. We use a Gaussian covariance with a
decorrelation radius of 50 km, which gives a rough estimate.

2.3. The nested model system

The skill of the forward model is very important in a DA sys-
tem because it controls the model drift from the initial state,
and even more so in the EnOI since the correlations depend on
the model ability to reproduce the dynamics. Chassignet et al.
(2005) demonstrate the skill of the Hybrid Coordinate Ocean
Model (HYCOM) for the GOM, emphasizing the importance of
horizontal resolution. Furthermore Oey et al. (2003) and Abascal
et al. (2003) show that the inflow through the Yucatan Straits is
important with respect to the timing of eddy shedding events.
A nested configuration can satisfy these two requirements with
reasonable computing cost. The TOPAZ3 system provides six-
hourly lateral boundary conditions to a high-resolution model
of the GOM (see Fig. 1), using lateral boundary techniques de-
scribed in Browning and Kreiss (1982). For the slow varying
variables, for example, baroclinic velocities, temperature, salin-
ity and layer interface, a simple relaxation technique is used. For
the barotropic components (velocities and pressure), the bound-
ary conditions are computed exactly while taking into consider-
ation both the waves propagating into the regional model from
the external solution and the waves propagating out through the
boundary from the regional model. This constitutes the standard
nesting procedure with HYCOM, with an additional horizontal
interpolation to the nested model grid. Note that tides are not
included, because they are small in the GOM.

The TOPAZ is a real-time forecasting system established for
the Atlantic and Arctic basins using HYCOM. It is capable of
monitoring the circulation patterns in the Atlantic (Chapter 15
in Evensen, 2006; http://topaz.nersc.no/). The grid is created
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using a conformal mapping of the poles to two new locations
by the algorithm outlined in Bentsen et al. (1999). The TOPAZ3
horizontal resolution varies from 11 km in the Artic to 18 km
near the Equator (approximately 1/8◦). The model is initialized
from the GDEM3 climatology (Teague et al., 1990) and spin-up
for 16 yr. The TOPAZ3 system transports 19.5 Sv into the GOM,
instead of the 23.8 Sv measured in CANEK programme during
the same 10-month period (Sheinbaum et al., 2002). Note that
TOPAZ3 9-yr average net transport is usually of 22 Sv. The
structure of the inflow agrees well with the measurements, with
the exception that the subtropical underwater (SUW) is too fresh
(36.45 instead of 36.6 psu). The TOPAZ3 used in this work does
not include DA.

Our high-resolution model is set-up with a 5 km horizontal
resolution, which is sufficiently high to resolve the mesoscale
features considering the first-mode (baroclinic) Rossby radius
(Ro � 30 km in the area; Oey et al., 2005b). The model is us-
ing a fourth-order numerical schemes for treating the advection
of momentum in the primitive equations (Winther et al., 2006).
To minimize the necessary spin-up time, the initial state is in-
terpolated from an equilibrium state of TOPAZ3, and spun up
for 3 yr.

In HYCOM, the vertical coordinate is isopycnal in the open,
stratified ocean, but smoothly reverts to a z-level coordinate in
the mixed layer and/or unstratified seas (Bleck, 2002). Both
models use 22 hybrid layers, with the minimum thickness of the
top layer of 3 m.

The bathymetry is specified using the General Bathymetric
Chart of the Oceans database (GEBCO) with 1

′
resolution, in-

terpolated to the model grids. The two models are forced by the
six-hourly and 0.5◦ analysed fields from the European Center
for Medium range Weather Forecasting (ECMWF). The models
use monthly average river discharge value taken from Dai and
Trenberth (2002) and Dümenil et al. (1993), and including the
Mississippi, Apalachicola and the Alabama rivers in the GOM.

In HYCOM, the model state consists of the following vari-
ables: baroclinic velocity components, barotropic velocity com-
ponents, barotropic pressure, salinity, temperature and layer
thickness (U, V, Ub, Vb, Pb, S, T and Thk). The diagnosed
model SSH is the steric height anomaly that varies due to the
barotropic pressure mode, the deviations in temperature and
salinity and does not include the inverse barometer effect (atmo-
spheric pressure) for consistence with the SLA measurements.

The SLA needs to be referred to a mean SSH. A 2-yr average
of TOPAZ3 SSH is interpolated to our local grid (Fig. 1). It
shows a maximum in LC, a positive track of SSH induced by the
passage of eddies that drift westwards. It qualitatively compares
well with the mean dynamic topography based on interpolated
satellite and in situ measurements (Rio and Hernandez, 2004).

The probability density function (PDF) of the model state
variables is assumed to be Gaussian in the EnOI. Thacker (2007)
highlights that the Gaussian distribution is truncated in HYCOM
for the layer thickness and for the sea surface temperature (SST)

when freezing/evaporation occurs, which can cause a problem
for DA purpose. Here, a post-processing is applied to ensure that
the layer thickness remains positive, and the issue of evaporation
is addressed further in the study, but a more appropriate manner
to deal with these problems is described in Thacker (2007).

3. Static ensemble multivariate covariances

In this study, the historical ensemble is composed of 122 weekly
model outputs over a 2.5-yr period. To avoid spurious correla-
tions, it is important to maintain the homogeneity in the sample.
Therefore, the sample is gathered from a model already in equi-
librium, with constant parameter setting and without DA. Section
2.1 pointed out that the efficiency of the EnOI is dependent on
how well the ensemble of state represents the variability of the
system, and on how linear the correlations are. To evaluate the
realism of the correlations extracted from the static ensemble,
we review them against our knowledge of the local dynamics. In
particular, we analyse the correlation of SSH with the surround-
ing surface velocities and with the water column properties.
Finally, we analyse the linearity of the dominant multivariate re-
lationships using scatterplots. Statistical analyses of data points
throughout the GOM reveal two typical locations, and these are
presented here. The first location is in the central part of the
GOM away from the shelf area, see Section 3.1. The second
point is in a near coastal area, on the upper slope of the northern
shelf, close to the Mississippi Delta, see Section 3.2.

3.1. Interior of the GOM

In the interior of the GOM, a positive anomaly in the SSH is
representative of an anticyclonic circulation, that is, LC intru-
sion or anticyclonic eddies. These anticyclonic circulations are
composed of YCW that differs from the resident GCW (Schmitz
et al., 2005a). The ensemble correlations are analysed at a po-
tential area of shedding (87.3◦W, 26.3◦N).

Figure 2 shows the horizontal correlation between SSH and
the velocity field. The arrows correspond to the correlation be-
tween SSH and the total eastward (Ut) and northward (Vt) veloc-
ity component. The background colour highlights regions where
the correlations with the eastward and northward velocities are
large as

C =
√

corr(SSH, Ut)2 + corr(SSH, Vt)2. (7)

An increase of the SSH at the target point is strongly positively
correlated with a current ring that has a radius slightly smaller
than 200 km. It agrees well with the average size of the eddies
in the GOM, between 300 and 400 km (Vukovich, 2007). There
is a slight anisotropy of the ring due to the interaction with the
resident LC.

An increase of the SSH at the target point is also posi-
tively correlated with a dominant cyclonic circulation at its
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Fig. 2. Ensemble correlation plots between the SSH point marked by a
cross and the surface currents in all model gridpoints in the Gulf of
Mexico. The white arrows represent the correlation with total eastward
and northward velocities. The background colour highlights regions
where the correlations with the total eastward and northward velocities
are large (C > =0.35, see eq. 7). The circle represents the area of
localization (Section 3.3).

southeastern side, and in a minor way (approximately 0.30) with
further cyclonic circulations along the perimeter of the main an-
ticyclonic circulation. Depending on the location of the target
point, the correlations indicate preferential locations of the cy-
clonic eddy around the main anticyclonic circulation anomaly.
Theses cyclonic eddies in the GOM may play a key role in
the shedding process (Schmitz et al., 2005b). However, a static
ensemble approach may not be sufficient to deduce their posi-
tions from the location of the main anticyclonic eddy, because
their behaviour and their growth are highly non-linear (Cherubin
et al., 2005b). Therefore, it does not seem appropriate to let the
assimilation act outside of the 200 km radius (black circle in
Fig. 2).

Figure 3b shows the vertical correlation between SSH and the
layer thickness profile at the target point. An increase of SSH
implies a strong deepening of the upper layers of the model.
In compensation for the deepening of the surface layers, the
thickness of the layers located below 500 m is reducing.1 These
correlations are in good agreement with geostrophy, and with
the vertical structure of an anticyclonic eddy in the GOM. The
negative correlation found at 150 m is discussed below, following
the correlation between SSH and temperature and salinity.

Figure 3a shows the correlation profile of temperature and
salinity with SSH at the first target point. At the surface, the

1 The layer depths are indicative since they correspond to their aver-
age over the ensemble. In general, the active layer of the LC extent is
approximately 700 m deep and can reach 1000 m deep.

Fig. 3. (a) Correlation profile between SSH and temperature (solid
line) and salinity (dashed line) at a target point located in the central
GOM; (b) correlation profile of the layer thickness with SSH at the
same target point. The depths of the layers are the average over the
ensemble.

SSH is positively correlated with temperature and slightly nega-
tively correlated with salinity. The YCW is warmer at the surface
because it is advected from tropical regions, and fresher near sur-
face due to the influence of the Amazon and the local dilution in
the Caribbean Sea (Rivas, 2005). The linearity of the correlation
between SSH and near surface temperature (30 m) is represented
in the scatterplot (Fig. 4a). Below 27◦C, the correlation between
SSH and temperature is positive and arguably linear, whereas
above 27◦C, no correlation is evident. Hence, a uniformly warm
mixed layer develops over the top 150 m during the summer
months in the GOM, and the temperature saturates. This exam-
ple shows one limitation of the multi-Gaussian hypothesis.

The correlations of SSH with temperature and salinity reach
a maximum for both variables between 150 and 200 m. Such
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Fig. 4. Scatterplots of SSH versus temperature near surface (a); at
layer 8 (1025.68 kg m−3 reference density, �200 m) (b) and versus
salinity at layer 8 (c), at the first target point. The thick line denotes the
linear regression, and R denotes the coefficient of correlation.

depths correspond to the warm and saline SUW core found at
intermediate depths in the YCW that composes the eddy. The
linearity of these correlations is analysed by using scatterplots
of temperature and salinity with SSH (see Figs. 4b and c). Two
groups of points that correspond to the different water masses
(SUW and GCW) can be recognized. Although a bimodal repre-
sentation of the correlation might be more appropriate, a linear
approach remains satisfactory in this case, because the distance
between the two groups is smaller than the variability within
each group. The negative correlation found at about 150 m be-
tween SSH and layer thickness can be explained by comparing
Figs. 3a and b. It corresponds to the layer above the SUW layer.
In the EnOI, an increase of SSH stretches the core of SUW at
the expense of the above layer thickness as previously suggested
by the measurements (fig. 1 in Elliott, 1982).

The correlations are then negative around 500 m for salinity
and temperature, induced by the presence of the fresher water in
the YCW.

At depth, the correlations are below 0.2, and can be considered
insignificant with respect to those discussed above. This seems
realistic, since the main differences between the YCW and the
GCW occur within the upper 700 m.

This vertical correlation shows an advantage of the EnOI over
the methods that are not entirely multivariate (e.g. Cooper and
Haines, 1996), because the impact on temperature and salinity
are representative of the local eddy stratification. However, the
multivariate correlation might not be valid for correcting the
position of an eddy in water that has uniform properties (e.g.
cyclonic eddies). In which case, a dynamic ensemble may be
more appropriate. We expect the latter situation to be marginal
by comparison to the positioning of the LC and its anticyclonic
eddies.

3.2. Upper slope

The dynamics on the upper slope are influenced by the coastal
dynamics. In particular at the studied location where the Mis-
sissippi and the neighbouring Atchafalaya rivers contribute ap-
proximately 2/3 of the 30 000 m−3 s−1 fresh water released into
the GOM (Morey et al., 2003). DA near coastal areas is a real
challenge, since the circulation is usually complex and measure-
ments are less accurate. The correlations are analysed at a point
located on the upper slope of the northern shelf close to the
Mississippi Delta (88.6◦W, 28.7◦N) in water sufficiently deep
(approximately 1000 m) so that data can be assimilated. The
variability of the SSH and thus the EnOI representation of the
forecast error variance is much smaller in coastal areas than in
the centre of the basin. It implies that the impact of assimilation
will be less than in deep waters.

The horizontal correlation between SSH and SST (larger than
0.8; see Fig. 5) is stronger than the one between SSH and the
surface velocity (smaller than 0.5 in Fig. 6). This correlation
is clearly linear (see Fig. 5) and can be explained by thermal
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Fig. 5. (a) Correlation profile between SSH and temperature (solid
line) and salinity (dashed line) at a target point located close to the
northern shelf; (b) correlation profile of the layer thickness with SSH at
the same target point. The depths of the layers are the average over the
ensemble.

Fig. 6. Scatterplot of SST versus SSH at the target point. The thick line
denotes the linear regression, and R denotes the coefficient of
correlation between the two variables.

expansion. Therefore, at the target point, the variability of SSH
is mainly controlled by seasonal variability. There is also weak
correlation with small vortices, but it is largely dominated by the
seasonal signal.

Figure 6 represents the correlation between SSH and the sur-
face velocity at the second target point, in a similar way as for the
first target point. Although the correlations are much weaker, a
high SSH is positively correlated with a westward shelf current.
This contradicts the results from Morey et al. (2003), where the
winds enhance a westward coastal shelf current during winter
time and an eastward coastal shelf current during the summer
months, in the northern shelf. However, our point is located fur-
ther away (on the upper slope) from the coastal area described
in Morey et al. (2003), which could explain some of the dis-

Fig. 7. Ensemble correlation plots between the SSH point marked by a
cross and the surface currents in the northern shelf of the GOM. The
white arrows represent the correlation with eastward and northward
velocities. The background color highlights regions where the
correlations with the total eastward and northward velocities are large
(C > =0.35, see eq. 7). The black lines represent the 100 and 1000 m
isolines. The circle represents the area of localization (Section 3.3).

crepancies. In our ensemble run, the residual shelf correlation
is induced by the interaction of small vortices2 with the shelf,
as described in Hamilton and Lee (2005). This mechanism is
more frequently observed during summer than during winter in
our historical run. A longer ensemble run should average out
this artificial correlation, and the expected correlation induced
by winds might then prevail.

In Figs. 7a and b, the vertical correlation is restrained to
the upper 200 m. The correlation between SSH and the layer
thickness is positive in the top 30 m and then reverses between
30 and 200 m. The vertical correlation of temperature with SSH

2 with a radius smaller than 75 km.
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(Fig. 7a) is uniformly positive in the top 50 m and decreases
slowly until 200 m. An SSH increase is positively correlated
with an increase of the salinity gradient, that is, fresher at the
surface and more saline below the first 20 m. These correlations
reflect the seasonal stratification differences between summer
(high SSH) and winter, in good agreement with the climatology.

3.3. Localization

The range of significance of a measurement is a critical ques-
tion in assimilation. In the present case, it is unrealistic that a
measurement in the western GOM contributes towards resolv-
ing the circulation in the eastern basin. In Fig. 2, an increase
of SSH in the middle of the basin is positively correlated with
an anticylonic circulation on the western side of the GOM, and
with an intensification of the Florida current. This is likely a
spurious long-range correlation due to the limited sample of
members, and we should therefore limit the horizontal extent of
the updates.

To implement the localization Evensen (2003) suggests a mul-
tiplication of the innovations (denoted by d − Hψ f in eq. 5),
by a step function. We ensure instead a smooth transition at the
edges of the localization area by applying weight function (W)
to the innovations, which depends on the distance between the
observation points (x), on the target model point (x0) and on the
localization radius (r0).

W =

⎧⎪⎨
⎪⎩

1 : if |x − x0| <
r0
2

1
2

(
1 + cos

(
2π (|x−x0|− r0

2
r0

))
: if r0

2 < |x − x0| < r0

0 : otherwise.

(8)

Oke et al. (2005) use a localization method that acts on the
covariance matrix rather than on the innovations. They apply
localization by a Schur product on the error covariance matrix
(A′ A′T ) with a quasi-Gaussian function.

A drawback of the localization is that it can breakdown the
conservation of the geostrophic balance. Oke et al. (2007) show
that localization conserves the geostrophic balance, when the
radius of the localization is equal to, or larger than the radius of
decorrelation (i.e. where the correlations become insignificant).

The scales of the features present in the SSH are small com-
pared to the size of the GOM. We observe that the correlations
become smaller in scale when the target point is chosen closer
to the coast. Therefore, the localization radius is set dependently
on the water depth, such that it linearly reduces from 200 km in
the deep GOM to 25 km at the limit of the assimilation domain
(300 m deep). In the central GOM, the dominant decorrelation
radius has the size of anticyclonic eddies (�200 km). Hence in
Fig. 2, a decorrelation radius of 200 km (black circle) seems
appropriate. It contains the geostrophic ring but does not in-
clude the correlation with the surrounding cyclonic eddies. In
the second target point, the correlations are dominated by sea-
sonal variability. To forecast the position of eddies, one would

prefer to correct the mesoscale eddies of diameter less than 150
km (Hamilton and Lee, 2005), which can interact with the large
eddy shed from the LC on the northern shelf. Therefore, a 75 km
radius contains the dominant state variable correlations (temper-
ature, SSH), and cuts off the artificial correlation with the shelf
current. The EnOI will thus act like a simple OI on the horizon-
tal direction, and with the use of interpolated maps, will be able
to represent the mesoscale eddies. The multivariate impact on
velocity will be very small as correlations are almost null within
the circle. But luckily, the seasonal variability and the passage
of anticyclonic eddies have a relatively similar impact on the
water column, (see plate 3 in Hamilton and Lee, 2005), and the
correlation with the stratification will be well suited. However,
we would like to emphasize that the approach used here is the-
oretically not satisfactory, and that a more appropriate approach
could be achieved by removing the seasonal variability (Sakov
and Oke, 2005).

4. Assimilation updates

In Section 3, the ensemble covariance is found in agreements
with the known circulation in two characteristic locations. But
in practical use, satellite altimeter measurements are numerous
and spread all over the domain. The accuracy of the DA system
is demonstrated for the 5 July 2006 prior to the shedding of Eddy
Yankee, which is observed from altimeters around the 19 July
2006.

A shedding event involves the rapid growth of non-linear
instabilities that are difficult to forecast (Cherubin et al., 2005b).
In particular, Eddy Yankee has been problematic for the offshore
oil and gas industry operating in the northern shelf of the GOM.

The initial state has undergone 1 month of weekly assimilation
cycles prior to the period of study, to bring the model relatively
close to reality and to emulate an operational setting. A value of
α = 0.09 is found to be optimal as it combines efficient updates
and stability. This value is therefore used in the experiments
below.

The multivariate consistency of the assimilation is analysed
in Section 4.1. The accuracy of the model forecast following the
assimilation is analysed in Section 4.2.

4.1. Multivariate consistency

Figure 8a shows the model SSH and currents before assimilation,
Fig. 8b after assimilation, and Fig. 8c corresponds to the SSH
measurements that are assimilated into the model.

Before assimilation, the model LC has a similar penetration as
described in the measurements, and cyclonic eddies can be found
on either side of the LC neck, which indicates a near-shedding
situation. However, the shedding event has advanced further in
the measurements, with a distinct eastern cyclonic eddy that
penetrates deeper into the LC. The shape of the northern tip of
the LC is too circular in the model, and does not have the same
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Fig. 8. (a) SSH Model Forecast for the 5 July 2006; (b) analysed state
for the same date (c) Ssalto/Duacs altimetry measurement provided by
CLS used for assimilation. The thick black line corresponds to the
section analysed in Fig. 9.

‘peanut’ shape as in the measurements. The cyclonic eddy to the
north is also too weak in the model.

The assimilation has corrected most of the discrepancies be-
tween the model and the observed SSH, and the resulting cur-
rents are in good agreement with the geostrophy. The vertical
projection of the assimilation is analysed across a section that

shows the strongest SSH increments (marked by a black line on
Fig. 8a).

The multivariate updates are presented in Fig. 9, with vertical
section plots of, temperature and salinity before assimilation,
SSH increments, and the corresponding temperature and salin-
ity increments with the layer interface of the analysed state. The
increments within each isopycnal layer are small, and rarely ex-
ceed 1◦ in temperature and 0.1 psu in salinity. The impact on
temperature and salinity corresponds relatively well to the cor-
relation found earlier in Section 3. Namely, there is a freshening
of surface salinity, an increase of the intermediate layer salinity,
an increase of the near surface and intermediate temperature and
a deepening of the top layers. The changes do not always occur
in the same layer, and as they approach the northern shelf, the
updates are closer to the surface.

4.2. Forecasting skills

To assess the skill of the model forecast, the forecast errors are
compared against posterior SSH data, with respect to the skill of
a trivial predictor (persistence) and those of the model without
assimilation. The rms error of model SSH against SLA track
data is computed after the assimilation for the model without
assimilation, for the persistence (of the analysed state), and for
the model forecast following the assimilation. During a shedding
event, the fast dynamics of the eastern GOM contrast with the
slower activity of the remaining domain, and the rms errors vary
from day-to-day, due to irregular sampling of satellite tracks.
Over 3 d, the track data cover the domain relatively uniformly,
and in Fig. 10, the rms errors are averaged over 3 d and over
the whole domain except for the first and last days of the study
period.

The states that have undergone DA (i.e. the persistence and
the forecast) are closer to observations than the non-assimilated
state. It demonstrates the benefit of DA on the accuracy of the
result, as expected. Although the difference is small at the begin-
ning, the model forecast rms error is lower than the persistence.
It shows that the model provides an added value compared to
the analysis. One may expect a quick increase of the rms errors
in case of violent adjustments after assimilation, but here, the
forecast beats the persistence from the first day after assimila-
tion. The relatively slow increase of the rms error indicates that
the accuracy of the prediction up to two weeks, is more depen-
dent on the accuracy of the initial state than on the skill of the
dynamical model, consistently with Oey et al. (2005a).

4.3. Generation of gravity waves

A general concern about DA is the possible generation of spu-
rious gravity waves, when the method does not maintain the
model balance (i.e. equilibrium of the pressure field). Theses
waves may propagate into the model and interfere with its dy-
namics. With the EnOI, the updates are a combination of model
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Fig. 9. SSH increments along the section (a and b). Vertical section plot before assimilation of temperature (c) and salinity (d). Analysed state layer
interface with increments of temperature (e) and salinity (f).

Fig. 10. Daily rms error of the model against SSH track data (3 d
centered average). The solid line corresponds to the model forecast
after assimilation, the dashed line to the persistence and the cross-solid
line to the model run without assimilation.

states, which implies that the model balance is conserved as
long as the model is linear. However Oke et al. (2007) show that
an inappropriate localization radius can compromise the model
balance and artificially amplify the high-frequency waves.

The computation of density from temperature and salinity is
non-linear in HYCOM. The combination of two isopycnal layer
properties by a DA step generates a new water mass with a
slightly different density due to caballing, which can alter the
model stratification. We first analysed the overall stability of
our EnOI set-up, and then quantify the contribution from the
artificial caballing.

To enhance the spurious effects of assimilation, the DA ex-
ercise done previously in 4.1 (noted EnOIα=0.09) is reprocessed
with an exaggerated large value of α (0.56 instead of 0.09, noted
EnOIα=0.56) that will pull the model closer to observations by ar-
tificially reducing the observation error. The impact on the layer
interface is studied along the section marked by a black line in
Fig. 8a. This analysis focuses on the top 1000 m since the updates
are smaller below. In Fig. 11, the background and the black lines
correspond to the temperature section of the assimilated state,
and the white lines correspond to the layer interface 6 h after as-
similation. We expect the assimilation shock to displace the layer
interfaces quickly during the 6 h that follow the assimilation by
the creation of gravity waves. But, this is not the case indicating
that even with an exaggerated value of α, only little noise is
introduced. Some differences can be identified within the mixed
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Fig. 11. Temperature section plot where the black lines correspond to
the layer interface after assimilation with α = 0.56, and the white lines
correspond to the layer interface after 6 h of model run.

layer (approximately the top 100 m), but it has little effect on the
model stability because the density changes are small and the
mixing scheme damps them rather quickly. Smaller discrepan-
cies can also be identified in the isopycnal layers, but it is hard to
differentiate between normal model variability and readjustment
caused by the assimilation. To clarify this issue, a time-series
of an isopycnal layer depth is analysed by wavelet analysis at
a point along the section where the assimilation updates were
strong for layer thickness, temperature and salinity (at 26.2◦ N
marked by a black circle on Fig. 11).

With the EnOIα=0.56 (Fig. 12b), one can observe a significant
high-frequency noise (with a period lower than 4 h) not present
on the run without assimilation (Fig. 12a). However, the model
damps this artificial noise in less than 2 d. To determine whether
the noise is originating from artificial caballing or from other
sources (e.g. localization), an additional assimilation experiment
(called EnOI-TSα=0.56) is performed with α set to 0.56, but with
no change in temperature and salinity (i.e. only layer thickness
and currents are updated). The initial high-frequency noise is no
longer obvious, see Fig. 12c. Table 1 gives the variance of the
high frequency (smaller than 4 h) of the different experiments.

The variance of the high frequency is reduced when neither
temperature nor salinity is changed during assimilation, and the
high frequency is almost reduced by half when the value of α

is set to a more realistic level (EnOIα=0.09 experiment). The rest
of the variance can be potentially explained by the localization
method, as described in Oke et al. (2005).

5. Discussion and conclusion

This study analyses in some detail the EnOI, a computer efficient
three-dimensional multivariate DA method, for assimilation of
altimetry data in the GOM. The method relates the updates to
different physical processes, depending on their geographical
location. A careful analysis is carried out focusing on the reality
of the correlation, regarding the known circulation of the area,
and the linearity of these correlations, as assumed in the EnOI.

Fig. 12. Wavelet analysis of the layer 8 depth time-series in the control
run (a), in EnOIα=0.56 (b) in EnOI-TSα=0.56 (c). The period unit is
hours. The dashed white line corresponds to the boundary of the time
interval, and the thick white line delimits the 95% significant
confidence indices. The background is the log of the energy (m2).
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Table 1. Variance in m2 of the high frequency (smaller than 4 h) for
the first 5 d after assimilation

Control EnOIα=0.09 EnOIα=0.56 EnOI-TSα=0.56

α 0 0.09 0.56 0.56
Variable updated None All All No T&S
HF variance 1 2 3.9 2.6

This analysis is done at two characteristic locations that are
related to different processes, in the central GOM and in the
upper slope.

In the central GOM, a positive anomaly of SSH is related
to the presence of an anticyclonic circulation. The correlations
extracted from our historical ensemble are in good agreement
with the properties of eddies in the GOM, their currents as well
as their stratification, similarly to other methods such as Cooper
and Haines (1996). In addition to that, the ensemble shows a
correlation profile of temperature and salinity in good agreement
with the water masses of eddies in the GOM.

In an upper slope area (northern shelf), the static ensemble
correlations are dominated by seasonal variability. The correla-
tions of SSH with temperature and salinity are in good agreement
with the climatology, but a weak artificial correlation is found
between SSH and the shelf current. This correlation is expected
to disappear using a longer historical ensemble.

The assumptions of linear correlation made in the EnOI are
approximately valid in the GOM. However, the scatterplots show
some non-linearity. First, there is a saturation of the near surface
temperature that will lead to an overestimate of the high tem-
perature values (Fig. 4a). Second, there are different groups of
members for the intermediate waters (Figs. 4b and c) in the cen-
tre of the basin. Mixing between these will lead to the formation
of new water masses with intermediate water properties, which
are not necessarily physical.

The saturation problem can be overcome by different solu-
tions:

(1) Application of a simple post-processing that limits the
maximum value obtained after assimilation to the range of the
ensemble. This ‘engineering fix’ allows for a better represen-
tation of the variable but a multivariate fix of temperature and
salinity would better preserve the model balance.

(2) Using different ensembles, that is, one with the variable
saturation and the other one without. Concerning the SST exam-
ple, the ‘non-summer’ ensemble will potentially present higher
correlation between SST and SSH, whereas the ‘summer’ might
not show any. This is one of the advantages of the EnKF over
the EnOI, since all the members are realizations of the model at
the time of assimilation, and that the risk of including alternate
mechanisms (e.g. seasonal) is reduced.

Concerning the different groups of populations found in
Figs. 4b and c, a bimodal representation of the relationship

might be more appropriate. However, such problems are dif-
ficult to handle in practice and a linear approach so far seems
satisfactory. Note that the classical EnKF is also unsuited to
bimodal distributions.

If one intends to forecast the eddy shedding in the GOM, the
DA method should correct the position of the main eddies in
the centre of the basin and the small-scale eddies in the upper
shelves area. In this concern, the EnOI appears to be suitable for
the centre of the basin, but not in the upper-shelf area, as seasonal
variability dominates there. To limit this impact, we suggest to
use a variable localization radius that increases with depths,
such that the radius is equal to the size of the vortices. Although
this fix seems relatively efficient, one should consider removing
the seasonal cycle from the ensemble, or using a dynamical
ensemble.

Although the dynamical balance is relatively well respected
with the EnOI, high-frequency oscillations (period smaller than
4 h) are introduced at the layer interface, partially caused by arti-
ficial caballing during assimilation. One counter-measure would
be to update only temperature (or salinity) in the isopycnal layers
and then diagnose salinity (or temperature) from the equation
of state, as it is done for the MVOI (Cummings, 2005). One
should then identify which is the controlling variable, tempera-
ture or salinity. This may lead to a practical problem because the
controlling variable might change depending on the geographi-
cal location. Furthermore, the diagnosed variable might be less
accurate than the one obtained by assimilation. Therefore, a
more appropriate approach could be to apply the anamorphosis
method described in Bertino et al. (2003). A non-linear transfor-
mation of temperature and salinity could then be devised such
that the transformed variables are linearly related to density. This
would ensure that the assimilation applied to the transformed
variables does not induce artificial caballing.

Finally, the EnOI succeeds in terms of forecasting skill com-
pared to the non-assimilated state and the trivial predictor (i.e.
persistence). Additionally, the example confirms the importance
of an accurate initial state over a good dynamical model for
forecasts up to 14 d long.
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