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[1] Simulated CryoSat ice thickness measurements have been assimilated into a coupled
ice-ocean model to examine the impact in Arctic ocean prediction systems. The model
system is based on the HYbrid Coordinate Ocean Model (HYCOM) and the EVP ice
rheology, and the data assimilation method is the Ensemble Kalman Filter (EnKF). It is
shown how ocean salinity, surface temperature, and ice concentration fields are affected by
the ice thickness assimilation, and how these fields are improved relative to a free-run
experiment of the model. The ice thickness assimilation primarily affects the surface
properties of the ocean. By running two different assimilation experiments, it is shown
how the choice of stochastic forcing is crucial to the performance of the assimilation.
Specifically, it is shown how stochastic wind forcing is important to correctly describe
model prediction errors, which are important for the data assimilation step. The
assimilation experiments illustrate how the ice thickness observations can have a strong
impact on the ice thickness estimates of the model system. The manner in which the EnKF
forcing is set up is crucial, but with the correct setup, the assimilation of ice thickness
measurements could have a beneficial effect on the modeled ice thickness and ocean
fields.
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1. Introduction

[2] Sea ice is an important component of the climate. The
presence of sea ice has a strong impact on the exchange of
momentum, moisture and heat between the ocean and
atmosphere. The high albedo of sea ice means that it affects
the net short wave radiation input to the earth. Sea ice is also
important for the formation of deep waters at high latitudes,
and subsequently for the thermohaline circulation of the
world oceans [Aagaard and Carmack, 1989; Roach et al.,
1993; Visbeck et al., 1995; Marshall and Schott, 1999]. In
addition, knowledge of the sea ice is important for oper-
ations close to the ice edge. This makes the ability to
accurately forecast sea-ice parameters important for the safe
operation of fisheries and offshore industries.
[3] At present, ice concentration is the most frequently

observed property of sea ice. Data from airborne passive
microwave sensors has given good information on the areal
coverage of sea ice since the late 1970s. Information on sea
ice thickness has been more sparse, with measurements by
upward looking sonar mounted onboard British and US
submarines serving as the most comprehensive data set,

with data available from the 1950s to the 1990s. The data is,
however, sparsely sampled in time and can only give ice
thickness estimates along cruise tracks in the Arctic. A clear
picture of the sea ice cover and its impact on climate is hard
to obtain until more frequent sampling of the ice thickness is
possible.
[4] The recent launch of the ICEsat satellite mission of

NASA will therefore be a valuable addition to our current
sea-ice observing capabilities. This satellite has shown
potential for estimating sea ice freeboard, which, when
compared with snow depth estimates, may be used to obtain
ice thickness [Forsberg and Skorup, 2005]. This satellite
uses laser to measure the freeboard of the sea ice, and gives
an indication of sea ice thickness. A similar satellite
mission, CryoSat, was launched by ESA in October 2005,
but unfortunately this satellite failed before entering orbit.
That mission planned to use satellite altimetry techniques to
estimate freeboard of sea ice, a technique demonstrated by
Laxon et al. [2003], and further improved for CryoSat. A
replacement mission for the failed CryoSat is now scheduled
for 2009.
[5] Aside from the important climate information provided

by the thickness measurements, the data sets will also be
important for validating sea ice models. As shown by
Rothrock et al. [2003], there is considerable variability
among different sea-ice model results presented in the
literature. The ice models tend to show agreement on certain
features, for instance the decline of sea ice thickness in the
1990s. On the other hand, they differ considerably in detail.
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The inability of many sea ice models to properly represent
annual variability has also been noted by Laxon et al. [2003].
[6] The assimilation of sea ice variables can be used to

produce improved estimates of the sea-ice cover, as was
shown by Lisæter et al. [2003], where sea ice concentration
derived from passive microwave sensors were used. That
work demonstrated how assimilation of sea-ice concentra-
tion can improve the sea-ice variables, mainly by control-
ling the location of the ice edge. The multivariate
assimilation of sea ice concentration also affected the ice
thickness, but since this happened primarily along the ice
edge, the changes to the ice mass budget in the Arctic were
small. In another study, Lindsay and Zhang [2006] found
that the assimilation of ice concentration improved ice draft
RMS errors and correlation between observations and
modeled ice draft. However, the ice thickness bias was seen
to increase after the assimilation, owing to how ice was
introduced/removed in their experiment.
[7] The two studies mentioned above illustrate that it is

beneficial to improve model ice thickness through data
assimilation, both in uni- and multi-variate assimilation
schemes. An interesting approach to improve sea-ice thick-
ness in models is to use the information available from the
sea-ice drift. The study ofMeier et al. [2000] illustrated how
sea-ice thickness could substantially change owing to the
assimilation of ice drift. In another study, Zhang et al.
[2003] assimilated sea-ice drift into their model and com-
pared against ice thickness measurements from submarine-
mounted sonars. They found that ice drift assimilation led to
a reduced ice thickness bias, and an improved correlation
between modeled and observed ice thickness in the Arctic.
[8] The direct assimilation of ice thickness is not yet

possible on a regular basis owing to the lack of data. With
future observation systems in mind, the present study will

examine the potential for assimilating sea ice thickness
observations in coupled sea-ice/ocean models. Using avail-
able observations, data assimilation gives an improved
model estimate by combining model values and observa-
tions. Data assimilation can be used to produce historical
model estimates (reanalysis), or to produce improved model
forecasts. Two data assimilation experiments will be carried
out using synthetic sea ice thickness estimates, which mimic
error statistics from sensors which were on board the
CryoSat satellite. The results from the data assimilation
experiments and the impact it has on the coupled ice-ocean
model should be useful for future sea-ice prediction systems.
[9] The experiments done in this work use the Ensemble

Kalman Filter [Evensen, 1994, 2003, 2004] to assimilate
synthetic sea ice thickness data into a coupled ice-ocean
model. In this approach, both the state of the ocean and the
ice are modified by the assimilation. We will investigate the
effect of assimilating ice thickness over a 1-year period.
Also of importance is the setup of the stochastic forcing in
the experiments. The stochastic forcing is introduced to
increase the ensemble spread, and its effect will be inves-
tigated in the different data assimilation experiments.
[10] This work is presented as follows: In section 2 the

ocean/sea-ice model is presented, which is followed by a
short description of the EnKF in section 3. The generation
of the synthetic ice thickness fields is presented in section 4
and the setup of the experiments is described in section 5.
Section 6 discusses the assimilation runs and how well they
perform compared to a model run without assimilation. We
also look at the impact of individual assimilation updates to
the model fields, as well as the cumulative effect of the data
assimilation. This section also discusses the setup of the
random forcing used by the EnKF and how this affects the
results. The study is summarized in section 7.

2. Model Setup

[11] The ocean model used is the HYbrid Coordinate
Ocean Model (HYCOM) [Bleck, 2002], which is based on
the Miami Coordinate Ocean Model (MICOM) [Bleck and
Smith, 1990]. The MICOM model uses density as the
vertical coordinate. The main advantage of isopycnic coor-
dinates lies in their ability to maintain the properties of water
masses which do not communicate directly with the surface
mixed layer. In the interior of the ocean, mixing is believed
to mainly occur along neutral surfaces [Montgomery, 1938],
which for most situations are relatively close to isopycnic
coordinate surfaces.
[12] A major change in HYCOM relative to MICOM is

the introduction of hybrid coordinates, which makes it
possible to mix s-, z-, and isopycnal coordinates. This
approach allows for high vertical resolution z-layers close
to the surface of the ocean, and makes it easier to use
advanced vertical mixing schemes in HYCOM, such as the
K-Profile Parameterization [KPP; Large et al., 1994] which
is used in this study.
[13] The model grid has a resolution focus in the Nordic

Seas with closed boundaries in the Bering Strait and the
South Atlantic (see Figure 1). It was created with the
conformal mapping tools of Bentsen et al. [1999], and has
grid sizes ranging from 100 to 150 km in the Arctic. The
vertical discretization consists of 22 isopycnal layers, with

Figure 1. Illustration of the model grid. Every second grid
line is shown; also shown is the location of a section
referred to in the text (black line in the Arctic).
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densities ranging from 1021.8 to 1028.11 kg m�3. Note that
the lightest layers in this discretization are primarily used to
describe the surface mixed layer, as they are usually too
light to describe interior water masses of the ocean. The
lightest layers then become the surface z layers in the hybrid
coordinate formulation.
[14] The ice model uses a two-category description,

where the surface is classified as ice or open water. The
ice thermodynamic model uses the ‘‘0-layer’’ thermody-
namic formulation of Semtner [1976], which ignores the
specific heat of the ice, and a snow layer is included. The
momentum exchange between the ocean and the ice is given
by quadratic drag formulas. The bottom ablation of ice is
given by a simple parameterization, where positive ocean
heat (relative to the freezing point) is immediately used to
melt the ice. As a consequence of this, the ocean temper-
ature never deviates from the freezing point if ice is present.
The ice model also calculates salinity fluxes to the ocean
model when ice freezes or melts. The ice dynamics model
uses the Elastic-Viscous-Plastic (EVP) ice rheology of
Hunke and Dukowicz [1997]. The ice dynamic and thermo-
dynamic models have been solved for the same model grid
as the ocean model, shown in Figure 1.
[15] The synoptic forcing used temperature, winds,

humidity, clouds, precipitation and sea level pressure from
the NCEP/NCAR reanalysis [Kalnay et al., 1996]. River
input is modeled as a negative salinity flux. This flux is
spread evenly over all ocean points within a radius of
300 km centered on the river locations. The river sources
in the Arctic include the Lena, Ob, Kotuy, Dvina, Yenisei
and the Mackenzie rivers [Dümenil et al., 1993; Aagaard
and Carmack, 1989]. At the surface the ocean model uses
temperature and salinity relaxation toward the Generalized
Digital Environmental Model (GDEM) Climatologies
[Teague et al., 1990], with a common relaxation time scale
of 150 days. Note that if ice is present in a grid cell, no
relaxation is used.
[16] The ocean fields were initialized from the GDEM

Climatology, whereas the ice model was initialized with
2.5 m thick ice and 100% ice concentration wherever the
GDEM climatology deviated less than 0.1�C from the
freezing point of sea water. This initialization was done
for the month of January, and the model was then integrated
with the synoptic forcing for approximately 10 years prior
to the start of the experiment. For climate studies 10 years
of ocean model spin-up is probably too short, but since the
focus of the experiment is on the effect of the data
assimilation over a 1-year period, we deemed 10 years to
be sufficient. In addition, the 10-year spin-up allows the
spatial ice thickness distribution in the Arctic to evolve from
the initially uniform 2.5 m ice cover to a more realistic
spatial distribution, with thicker ice along the Canadian
Arctic Archipelago and the northern coast of Greenland. A
more detailed setup of each of the experiments is given in
section 5.

3. Ensemble Kalman Filter

[17] To assimilate observational data into a model system,
it is important to have a knowledge of the errors present in
the model and observations. Vital statistics are the error
covariance matrices of the observations and the model state.

The Ensemble Kalman Filter (EnKF) [Evensen, 1994] uses
an ensemble of model states to estimate the model error
statistics.
[18] In the EnKF approach, correlation patterns will

evolve according to the nonlinear evolution of the ensemble
members. This comes at a cost of model resources when
compared to for instance Optimal Interpolation (OI) methods
[e.g., Cooper and Haines, 1996; De Mey and Benkiran,
2001; Zhang et al., 2003]. The OI-methods integrate a single
model state, whereas the EnKF integrates several model
states in parallel, thus requiring more CPU time in total. The
main advantage of the EnKF is that error statistics are
calculated using different realizations of model states at the
current time, rather than using error statistics specified a
priori. Moreover, in multivariate data assimilation, OI meth-
ods require covariances between the assimilated variable
(ice thickness) and other variables (e.g., temperature). These
covariances are usually diagnosed from time-averaged
statistics, or from physical reasoning, whereas in the EnKF
they are derived statistically from the different model real-
izations. A brief explanation of the EnKF is given here; for a
more thorough description of the EnKF see Evensen [1994,
2003, 2004] and Burgers et al. [1998].

[19] Let yi
f 2 R

n�1 be the n-dimensional model forecast
of the ensemble member i 2 {1, 2, . . ., N}. This forecast
evolves in time from the analyzed ensemble member, yi

a, at
time tk,

y f
i tkþ1ð Þ ¼ gg ya

i tkð Þ
� �

þ bi tkð Þ: ð1Þ

Here bi 2 R
n�1 is an additive stochastic error component

drawn from a N (0, sb) distribution, and represents the
effect of model errors on the evolution of the ensemble
members. This error can be due to errors in the physical
assumptions of the model and due to external errors (e.g.,
atmospheric forcing), in our application bi is implicitly
introduced by adding stochastic forcing components to
the atmospheric forcing used by the coupled ice-ocean
model, see section 5. The operator g: Rn�1 ! R

n�1 can, as
already mentioned, be a nonlinear function of the model
state.
[20] In order to infer the error evolution of the model

state, knowledge is needed of the ‘‘truth.’’ In the EnKF, the
best estimate of the truth is represented by the ensemble
mean state. It follows that the model state error covariance
used in the EnKF is that given by the ensemble covariance.
Then, at any time, an estimate of the model state error
covariance matrix can be computed from the ensemble of
model states as

P f 
 P f
e ¼ y f

i �y f
� �

y f
i �y f

� �T

; ð2Þ

where y is the ensemble estimated mean state, and the
overbar denotes the expected value.
[21] At the time observations are available an analysis is

computed. The observations d 2 R
m�1 have an associated

uncertainty ���, and an observation error covariance matrix R =
��� ���T, where the observation error covariance matrix must be
based on prior knowledge of the observation errors. Let H 2
R
m�n be a linear operator that transforms the model state to
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the observation space. Then the analysis update is given by
the following variant of the traditional Kalman filter equa-
tion [Jazwinski, 1970; Burgers et al., 1998]:

y a
i ¼ y f

i þ P f
e H

T HP f
eH

T þ R
� ��1

di �Hy f
i

� �

¼ y f
i þ Ke di �Hy f

i

� �
;

where Ke is called the optimal Kalman gain. Special notice
should be taken of the observation vector di used in
equation (3); as indicated by its subscript it is different for
each ensemble member. This is because the observations
need to be perturbed to get an analysis error covariance
matrix consistent with the original Kalman Filter. As shown
by Burgers et al. [1998] the analysis with di taken from a

N (d, R) distribution gives the following analysis covariance
matrix:

P a
e ¼ I � KeHð ÞP f

e : ð4Þ

Here I is the identity matrix, and the analysis covariance
matrix derived in this way is consistent with the covariance
of the analysis in the Kalman Filter. Without perturbation of
the original observations d, the analyzed covariance would
be systematically underestimated, an effect which could
lead to filter divergence. By filter divergence we mean that
the error estimate of the model in the EnKF is too small, and
the analysis will have little impact on the model. This way
significant bias can develop in the model ensemble.
[22] It should be noted that variants of the EnKF have been

developed which removes the need for perturbed observa-
tions [see Anderson, 2001; Whitaker and Hamill, 2002;
Bishop et al., 2001; Evensen, 2004], but for our experiments
we use the analysis method given by equation (3).
[23] In the literature, the model state errors described by

the EnKF (Pe
f ) are frequently called EnKF estimated errors

or forecast errors. In the following, we will use the term
prediction error to describe this quantity.

4. Synthetic Ice Thickness Data

[24] The ice thickness data used in this study is intended
to be a realistic representation of ice thickness products of
the CryoSat mission. It is created using sea ice model data,
which gives estimates of the ice thickness, ice concentra-
tion, surface temperature and snow thickness. The surface
state is then used in a model which simulates the orbit of the
CryoSat satellite, and the instrument and geophysical errors
introduced by the sea ice thickness retrieval. The synthetic
ice thickness data was generated for 1990, the year when the
assimilation experiment takes place. It should be noted that
the model used to generate the synthetic ice thickness,
briefly described below, is different from the model used
in the assimilation experiments.

4.1. Background Ice Thickness Data

[25] The surface state was generated from a run of a coupled
sea-ice/oceanmodel. This model is different from the one used
in the assimilation experiments, and consists of the Miami
Isopycnic Coordinate Ocean Model (MICOM) [Bleck and
Smith, 1990] coupled to a dynamic-thermodynamic sea ice

model. The sea ice model uses the Viscous-Plastic rheol-
ogy of Hibler [1979], as implemented by Harder [1996].
The thermodynamic module is described by Drange and
Simonsen [1996]. Two major differences between the
model used to generate synthetic ice thickness data and
the one used in the assimilation experiment (section 2) are
in the ocean model and the ice model. It should also be
noted that the model grids are slightly different, but they
both include the Arctic and the North Atlantic Ocean.
[26] The model used to generate synthetic ice thickness

was run for a 40-year period, from 1958 to 1998 using
NCEP forcing, and relaxation to Levitus climatologies
[Levitus et al., 1994; Levitus and Boyer, 1994]. Compar-
isons of the modeled fields with ice thickness from subma-
rine sonar measurements are shown in Figure 2 for two
submarine cruises done in 1990 and 1991.

4.2. Generation of Synthetic CryoSat Observations

[27] After having obtained the ice thickness estimates
from the coupled ice/ocean model, the sampling pattern of
CryoSat was used to obtain measurements, using the model
as the ground truth. An example of the ice thickness
sampled this way is shown in Figure 3. Errors were then
added to the thickness estimates to simulate the errors of the
CryoSat sensor. As the CryoSat satellite sensor measures the
freeboard hf, a first step is to convert model ice and snow
thickness to freeboard height,

hf ¼
rw � ri
rw

hi �
rs
rw

hs; ð5Þ

where h and r are thickness and densities of the snow and
ice (subscript i or s), and rw is the density of sea water. The
synthetic freeboard estimate is then calculated by adding a
random error wf to the model freeboard estimate. The
random error wf has an error variance sf

2, which is a
function of the ice elevation error variance sEice

2 and the
ocean elevation error variance sEocn

2 ,

h0f ¼ hf þ wf

s2
f ¼ s2

Eice þ s2
Eocn: ð6Þ

The error variances of ice and ocean elevation depend on
formulas given by Laxon [2001] and Peacock and Laxon
[2004]. These errors are functions of the surface state,
depending on ice concentration, ice thickness, surface
temperature and backscatter contrast between ocean and
water. The errors were computed using a simulation of the
CryoSat instrument and retrieval algorithms over idealized
sea ice surfaces.
[28] Experience from the ERS sensors indicates that as

the surface temperature reaches the melting point, the
location of the surface reflection becomes ambiguous.
Therefore, if the surface temperature rises above �5�C,
the synthetic data is discarded. Furthermore, owing to a
strong dependence of ice elevation error on the ice concen-
tration, an ice concentration threshold has been introduced.
If the model ice concentration is below 0.7, the synthetic
data is discarded as well. We stress here that this applies
only to the generation of the synthetic observations. In the
experiments, any available data will be used regardless of
the surface temperature or ice concentration in the model.

ð3Þ
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[29] As the synthetic freeboard value is generated from
equation (6), the synthetic ice thickness h0i is obtained from
equation (5). Likewise, the ice thickness error variance of
the synthetic data can be obtained by using equations (5)
and (6):

s2
h0
i
¼

r2w s2
Eocn þ s2

Eice

� �
þ r2ss

2
hs

rw � rið Þ2
; ð7Þ

where a snow thickness error variance has been included as
well. The snow thickness error variance is based on values
from Radionov et al. [1996] and is set to 0.0004 m2. An
example of the original model ice thickness together with
the synthetic ice thickness error variance and the final
synthetic ice thickness is shown in Figure 3.
[30] The original synthetic data is finally averaged over

the model grid cells to give a representation which is similar
to the one used in the model we assimilate data into. Note
that the ice thickness error variance will be reduced when

averaging the ice thickness over one grid cell. The resultant
ice thickness and variance over one model grid cell becomes

h
gc
i Dtð Þ ¼ 1

Ngc Dtð Þ
XNgc Dtð Þ

j¼1

h0i; j;

sh
gc

i
Dtð Þ2¼ 1

Ngc Dtð Þ2
XNgc Dtð Þ

j¼1

s2
h0
i; j
; ð8Þ

assuming that the errors of the ice thickness measurements
are uncorrelated. Here Dt is the averaging time period and
Ngc(Dt) is the number of measurements available in one
grid cell for the averaging time period. These averaged data
are to be assimilated into the model, so we drop the ‘‘gc’’
superscript in the following, implicitly assuming that the
assimilated data are of the form in equation (8).
[31] For the experiments described in the next section we

used an averaging period (Dt) of 14 days. Assuming an
average ice drift of 0.1 ms�1, the drift over 14 days would

Figure 3. (left) Original ice thickness field from the model used to create the synthetic ice thickness
observations. (middle) Estimated error standard deviation of the synthetic observations, calculated from
equation (7). (right) Final synthetic observations, calculated by adding a random error whi

to the original
observations. The figures are for Julian day 35 of 1990.

Figure 2. Comparisons between ice thickness from the model used to generate synthetic ice thickness
(thin line), compared with ice thickness estimates from submarine sonars (thick line). Comparisons are
for (left) 1990 and (right) 1991. Note that the x axis in the left plot denotes numbered segments along the
cruise track, whereas the x axis in the right plot shows the cumulative distance along the cruise track.
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become approximately 100 km, which is roughly the size of
one grid cell in our model. The 14 day time period was
chosen for practical purposes, while at the same time not
being too long so that advective effects become too impor-
tant for the averaged ice thickness. In a forecasting appli-
cation, the averaging period would probably be shorter.

5. Experiment Setup

[32] The state vector y was chosen to include both ocean
variables and ice variables as these are closely related,
particularly for the mixed layer part of the ocean. For each
of the 22 layers of the ocean model we included salinity,
temperature, layer thickness and velocity. In addition the
barotropic velocity and barotropic pressure components
were included along with ice concentration, ice thickness
and ice velocity from the ice model. The inclusion of
variables other than ice thickness will also force an update
of these variables because they can be negatively or
positively correlated with ice thickness through the ensem-
ble covariance matrix.
[33] In the analysis, sampling errors in the prediction

error covariances can give rise to spurious correlation
between remote points, a problem which becomes greater
for smaller ensemble sizes [Houtekamer and Mitchell,
1998]. A common practice to counteract this is to look at
the problem locally. This means that each grid cell value is
updated using only observation values in a radius of
influence r0 around the grid cell [Houtekamer and Mitchell,
1998; Keppenne and Rienecker, 2002; Brusdal et al., 2003],
and this approach is also used here. While this limits some
of the problems with spurious correlation in the prediction
errors, this method may cause noisy updates by abruptly
cutting off correlation functions in the ensemble. An ap-
proach which can reduce this effect is to use the method of
Houtekamer and Mitchell [2001] which smoothly reduces
these correlation functions toward zero. This method was,
however, not used in this study.
[34] During the model integration there is a need to

incorporate the effect of model errors on the evolution of
the ensemble members. The approach used is to add
pseudo-random fields, with a prescribed length scale and
timescale, to the NCEP forcing fields. This procedure is a
crude way of incorporating the effect of model errors dbi in
equation (1) into the ensemble, and is similar to assuming
that the dominant errors are in the forcing data. See the
Appendix of Evensen [1994] for a description of the
pseudo-random fields added to the forcing, and Table 1
for a description of the stochastic forcing component
parameters used. The pseudo-random fields affect temper-
ature and wind stress in the experiments described later (see

also Table 2). Finally, it should be noted that the above
procedure for generating dbi does not address error growth
due to inaccuracies in the physical implementation of the
model.
[35] The initial ensemble was generated from the 10-year

spin-up of the model described in section 2. After the 10-year
spin-up of a single model state, random fields were added to
this model state to produce a 100member ensemble. For each
ensemble member, new ice concentration and ocean model
layer thickness fields were generated by adding smooth
pseudo-random fields to the original model state. All other
variables of the individual ensemble members were identical
to the original model state. The random fields added to the
ocean model layers were vertically correlated and had a
horizontal decorrelation length of �400 km. The standard
deviation of the random fields was set to 10% of the original
ocean layer thickness, and the ocean layers were finally
adjusted so that no barotropic waves were generated by this
procedure. In a similar manner, the random fields added to the
ice concentration fields had the same decorrelation length,
and the standard deviation where set to 10% of the original
ice concentration. This ensemble was then integrated for two
more months before starting the experiments. The two month
period was chosen on the basis of previous experience with
the EnKF, where a relatively short ensemble spin-up was
used [Haugen and Evensen, 2002; Brusdal et al., 2003].
Ideally, a long spin-up of the ensemble is preferable, but the
computing resources needed makes this unpractical.
[36] Two assimilation experiments were performed, along

with a single free-run experiment for comparison. These
experiments are given in Table 2. Experiments PW and SW
are performed with a 100 member ensemble using the
EnKF. The difference between these experiments is given
in the stochastic forcing, where PW (‘‘Perfect Wind’’) does
not have a stochastic wind forcing component whereas
experiment SW (‘‘Stochastic Wind’’) has. Note that both
PW and SW use a stochastic air temperature component,
since a representation of bi is needed in equation (1).
Parallel to the ensemble run a free-run model was also
integrated for comparison. This model was initialized from
the ensemble mean at the start of the experiment, and used
the standard NCEP forcing fields with no stochastic forcing
components. Both EnKF experiments use the same ensem-
ble initially.
[37] The experiments were run for a full year (January

1990 to January 1991) with the synthetic sea ice thickness
data averaged and assimilated every 14 day. The data which
are assimilated are first averaged for this time period as
detailed in equation (8). Some of the relevant parameters for
the assimilation experiment are given in Table 1.

6. Impact of the Assimilation

[38] The multivariate analysis changes the ice concentra-
tion and ice thickness of the ice model, as well as fields in

Table 1. Data Assimilation Parameters

Parameter Description Value

N number of ensemble members 100
r0 observation radius of influence 200 km
sc obs. error standard deviation equation (8)
rc obs. error decorrelation length scale 80 km
rb decorr. length for random forcing �1000 km
Dt averaging period/assimilation time step 14 days

Table 2. Setup of the Stochastic Forcing in the Experiments

Experiment
Wind Stress

Standard Deviation, Nm�2
Air Temperature

Standard Deviation, K

PW - 2.0
SW 0.01 2.0
Free-run - -
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the ocean model. The individual updates depend on the
statistics of the observation and model prediction errors, as
well as on the distance between observations and model at
the location of the observations. This section shows exam-
ples of the analysis updates from the experiments, along
with cumulative effects. An examination of the stochastic
forcing setup is also given.

6.1. Ice Thickness

[39] Figure 4a shows the ice thickness in experiment SW
on day 20, prior to the assimilation step. The ice thickness
field in the model looks realistic, with a thickening of the
ice cover toward the Canadian Arctic Archipelago and the
northern coast of Greenland. The ice extent in the Barents
Sea, Greenland Sea and the Labrador Sea is consistent with
typical ice extent observed from satellite.
[40] An example of how the ice thickness assimilation

changes the modeled field is shown in Figure 4b. The plot
shows the ice thickness field after assimilation minus the
field before assimilation. The adjustment imposed by the
assimilation is complex, with intertwining regions of in-
creased and reduced ice thickness. The end result of the
assimilation at this time is an increase in the total ice mass
in the Arctic.
[41] The difference between the model and the observa-

tion data is a useful quantity for the EnKF. As a tool to
study this distance, we introduce the following measure:

RMSe xð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trace x xT

� �
=m

r
ð9Þ

where

xxT ¼ 1

max N � 1; 1ð Þ
XN
k¼1

xkx
T
k ; ð10Þ

where x denotes a R
m vector, and N is the number of

ensemble members. Note that x xT is an outer product,
resulting in a matrix. The N � 1 denominator is used for
ensemble properties, whereas for single member experi-
ments the denominator is 1. For an ensemble field, this
measure includes effects from the ensemble variance and
the mean value. For the single-member run, the measure is
the standard Root Mean Square measure.
[42] The difference between observations and measure-

ments, d � H y, is called the innovation, where H y
represents the model ice thickness interpolated to the obser-
vation points. The time evolution of RMSe(d � H y) for the
assimilation experiments is shown in Figure 5a, also shown
in this figure is the evolution of the RMS error for the free-
run experiment. In Figure 5a there is a gap in the time series
in summer, due to lack of data for that time period. As
mentioned the data retrieved depends on the surface state
of the ice and snow. This makes it difficult to obtain
reliable freeboard measurements when the surface is close
to the melting point, and the synthetic data used here reflect
this.
[43] The sawtooth features in Figure 5a are the results of

the sequential assimilation being performed, which draws
the model solution toward the observations, thereby reduc-
ing the innovation measure. The figure shows that the
assimilation experiments have the desired effect of reducing
the distance between model and observations, relative to the
free-run experiment. This can be seen through the individual
assimilation updates, and through the cumulative effect of
these updates. It should be noted that the innovation
measure includes the effect of observation and model
prediction errors, which both increase the RMS measure.
This implies that the improvement of the ensemble mean
relative to the free-run experiment is better than suggested
by Figure 5a.
[44] During summer, the error of the model ensemble

increases, since no synthetic data is assimilated at that time.
The effect of the assimilation can, however, be seen also

Figure 4. Example assimilation statistics from experiment SW. (a) Average ice thickness prior to the
analysis on Julian day 20 in 1990. (b) Ice thickness update (analysis-forecast). Grey lines denote the 15%
ice concentration contour.
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after this pause in the assimilation, since the innovation
RMSe errors are smaller in the assimilation experiments
than in the free-run experiment when the assimilation
recommences in late summer.
[45] In assimilation experiment PW, note the relatively

small assimilation updates which take place in winter
(Figure 5a). The exception to this is the very first update
in the experiment. After the first assimilation of ice thick-
ness is performed in experiment PW, the remaining assim-
ilation updates are small until the assimilation recommences
in September. Weak assimilation updates are also seen at the
end of the year. The cause of this can be traced back to the
prediction error of the EnKF. The EnKF uses an ensemble
to predict the errors, which means that the actual error
covariance of the model is more likely to be underestimated
in case of significant model bias.
[46] The innovation sequence can be used to provide

consistency checks for the prediction error, and to investi-
gate bias. Let the model forecast be written as

y ¼ y t þ qþy 0; ð11Þ

where the truth is given as yt (note that by ‘‘truth’’ we here
mean the model results which the synthetic observation are

derived from). The error is decomposed into a constant
(bias) part q and an ensemble anomaly part y0, it is the error
due to the latter which the EnKF can predict. The
measurements are written

d ¼ Hy t þ ���þ d0; ð12Þ

where again the error ��� has been split into a anomaly part
(d 0) and a bias part (���). This gives the following expression
for the innovation covariance matrix:

d �Hyð Þ d �Hyð ÞT ¼ RþHP fHT þ ����Hqð Þ ����Hqð ÞT ;
ð13Þ

where model and measurement anomalies are assumed to be
uncorrelated. Also note that it is the difference in bias
between measurements and model which contribute to the
innovation covariance matrix. The measure RMSe(d �H y)
can be written

RMSe d �Hyð Þ½ �2¼ RMSe d0ð Þ½ �2þ RMSe Hy0ð Þ½ �2

þ S ���; qð Þ½ �2; ð14Þ

Figure 5. (a) RMSe values of the innovation for the assimilation experiments and the RMSe values of
the innovation for the free-run experiment. (b) RMSe for the observation errors, and the model prediction
errors for the assimilation experiments. (c) Bias component jSj from equation (14) for the two
assimilation experiments.
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where the last component is the effect of model and
measurement bias. The size of this bias component can now
be estimated from equation (14). Figure 5b shows the
components due to observation errors and model prediction
errors, RMSe(d

0) and RMSe(H y0), which can be calculated
directly from the ensemble. Figure 5c shows the component
due to Bias, jS(���, q)j.
[47] In data assimilation schemes it is frequently assumed

that there is no bias in model and measurements, and this
assumption is also used by the Ensemble Kalman Filter.
Figure 5c shows that the bias component jSj is usually of
the same magnitude as the measurement and model predic-
tion errors. Proper treatment of bias is still a big challenge,
and is out of the scope of this paper. Here we mainly note
that the bias problem is larger in the experiment without
stochastic wind forcing, experiment PW. Also note that the
bias component is usually reduced by the assimilation, and
that this reduction is stronger in the experiment with
stochastic wind forcing, experiment SW. The reason for
this is connected to underestimation of model prediction
errors.
[48] The model prediction errors are of high importance

when the assimilation is performed. Although bias is a
problem, it becomes a much larger problem if the model
prediction errors are severely underestimated. Figure 5b
shows the prediction errors along with the measurement
errors, and it clearly illustrates how the prediction errors in
experiment PW are much lower than the prediction errors of
experiment SW, also they are much lower than the obser-
vation errors.
[49] To illustrate how too low prediction errors affect the

data assimilation, it is useful to consider the scalar version
of equation (3). Let yi

f be the forecasted scalar (e.g., ice
thickness), let di be the observation of this scalar, and let Pe

f

and R be the predicted error variance and observation error
variance, respectively. We then have

ya
i ¼ y f

i þ
P f
e

P
f
e þ R

di � y f
i

� �
¼ P f

e

P
f
e þ R

di þ
R

P
f
e þ R

y f
i ; ð15Þ

which shows that for low prediction errors Pe
f, the data

assimilation would give very low weight to the value di. In
such cases the analysis yi

a is close to the forecast estimate
yi

f.
[50] The lowest prediction errors in experiment PW are

found in the beginning of the experiment, January–June
1990, and they are also found at the end of the experiment,
October–December 1990. Roughly speaking, the low pre-
diction errors coincide with freezing conditions in the
central Arctic. For the current setup of the model, the results
of experiment PW show that the ensemble in this case is not
suited to describe the prediction errors. This is primarily due
to insufficient prediction error growth between the assimi-
lation time steps. In fact, for many of the time intervals
between the assimilations, one can see a decrease in the
estimated error of experiment PW (Figure 5b).
[51] An example of the low prediction error growth is

shown in Figure 6a, which gives the growth after the
analysis on day 6 in 1990 until day 20 in 1990, prior to
the next analysis. The figure shows that for the setup in
experiment PW there is a reduction in prediction error for
almost the entire Arctic Basin. This behavior should be
contrasted to the prediction error growth in experiment SW
(Figure 6b), where the inclusion of a stochastic wind forcing
component leads to a increased prediction error in the model
ensemble. The difference in error growth between assimi-
lation steps is crucial for the improved results of experiment
SW when compared to experiment PW. The main reason for
the differences in ice thickness is wind-forced differences in
local divergence and convergence of sea ice, which modi-
fies its thickness through sea-ice ridging. In addition, local
divergence of sea ice creates open water in winter, which
greatly increases heat fluxes to the atmosphere, and
increases ice production.
[52] As illustrated here, maintaining model prediction

errors depend greatly on the formulation of the stochastic
forcing of the model ensemble used here. It should be
mentioned that there are also other approaches for main-

Figure 6. Growth of prediction error between two assimilation steps. The difference shows the
prediction error variance on day 20 in 1990 minus the prediction error variance on day 6 in 1990. Shown
are results for (a) experiment PW and (b) experiment SW.
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taining variance of the model ensemble [see, e.g., Pham,
2001; Hamill and Whitaker, 2005].

6.2. Effects on Other Variables, and Long-Term Effects

6.2.1. Surface Variables
[53] As the observed variable, ice thickness, is updated in

the assimilation, so will other variables be updated through
their covariances with the ice thickness fields. An example
from experiment SW, showing surface salinity, temperature
and ice concentration updates, along with ice thickness
updates is shown in Figure 7 for two different times, one
in winter (day 20, 1990) and one in late summer (day 258,
1990). From the different plots the assimilation of the ice
thickness data has a visible effect on the other variables in
the ice and ocean model.
[54] The wintertime assimilation update shows how the

ice thickness assimilation mainly affects the ice concentra-
tion close to the ice edge. Within the ice edge, there is very
little effect of the assimilation on the ice concentration fields
(Figure 7b). This can be traced back to a very low ice
concentration variance within the ice edge in winter, due to
ice covering close to 100% of the surface. This can also be
seen in ice concentration derived from passive microwave
sensors, and from Radarsat estimates [Kwok, 2002]. No ice
concentration variance leads to no ice concentration update
when assimilating ice thickness. In summer, this effect still
remains, but to a lesser degree than in winter. Although the
central ice pack remains largely unaffected by the assimi-
lation, there is now a broader band along the ice edge which
is affected by the assimilation when compared to the
wintertime situation (Figure 7e). This wider region of large
ice concentration updates can be attributed to a wider region
of melt along the ice edge.

[55] Sea surface salinity is affected by the assimilation of
ice thickness, and there is an impact both in winter and in
summer, generally for the entire ice pack. In winter the
updates of sea surface salinity (Figure 7c) do not have a
clear connection to the updates in ice thickness. We spec-
ulate that this may be due to lead opening/closing over short
timescales, which leads to a more saline ocean, but may
have a small impact on ice thickness. In summer, however,
the analysis update in surface salinity (Figure 7f) often has
similar spatial patterns to the analysis update in ice thick-
ness. This is related to the ensemble behavior at this time of
year, when the covariance between sea surface salinity and
ice thickness is mostly positive owing to vertical ice melt.
[56] Sea surface temperature (not shown) is, much in the

same way as ice concentration, to a large extent unaffected
by the ice thickness assimilation in the central ice pack. The
reason for this is that the model temperature at the sea
surface is constrained to the freezing point when ice is
present. Therefore, within the central ice pack, there is very
little variation in sea surface temperature, while close to the
ice edge the variation is larger. This holds both in winter and
in summer. Note, however, that changes to sea surface
temperature is important when the assimilation introduces
ice in ice-free regions. In these cases the temperature is
reduced by the assimilation, which prevents immediate
melting of the newly introduced ice.
[57] The ensemble updates are related to the underlying

statistics of the ensemble which again are related to dynam-
ical mechanisms in the model ensemble. For instance,
freezing anomalies in the ensemble can lead to a positive
correlation between ice thickness and sea surface salinity, as
the ice expels brine to the underlying ocean. On the other
hand, ice dynamics can change this, for instance can local

Figure 7. (left) Effect of the assimilation on ice thickness, (middle) ice concentration, and (right) sea
surface salinity for experiment PW. Shown are updates (after-before assimilation) for (top) day 20 and
(bottom) day 258.
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divergence lead to a negative correlation between ice
thickness and sea surface salinity. This can happen because
ice divergence transports thick ice out of a region, which
leads to increasing areas of open water being exposed to
freezing conditions, which again increases the ice produc-
tion while producing thin ice. The net effect is a reduced ice
thickness in the region along with an increase in sea surface
salinity, leading to negative correlation. The inability to
precisely anticipate these and similar effects is one of the
reasons for using methods such as the Ensemble Kalman
Filter.
6.2.2. Cumulative Effects
[58] The long-term effects of the assimilation can be seen

when comparing the model fields of experiment SW with
those of the free-run experiment. The ice thickness and
surface salinity fields for the free-run and SW experiments
are shown in Figure 8 near the end of the experiments, at
day 342. The result of the assimilation is an ice thickness
which is closer to the ice thickness fields which the
synthetic observations are based upon (see Figure 8b versus
Figure 8a). The assimilation experiment shows an ice cover
which is thicker, especially in the vicinity of the Canadian
Arctic Archipelago, and the northern coast of Greenland.

[59] The differences in the ice thickness fields are not
reflected in the ice concentration fields. Both experiments
show an ice concentration close to unity within the ice pack
(not shown), as is expected at this time of year. The location
of the ice edge is also very similar in the free-run and
assimilation experiments at this time of year (see grey lines
in Figures 8a and 8b).
[60] Although the ice concentration fields are similar in

Figures 8a and 8b, it should be noted that the ice concen-
tration fields look different in summer. The assimilation
experiments have a larger sea ice extent in summer than the
free-run experiment (Figure 9). This is partly the reason for
the very high ice thickness RMS errors found in summer in
the free-run experiment.
[61] The surface salinity fields also show a clear effect of

the ice thickness assimilation, most noticeably in the central
Arctic Ocean (Figures 8c and 8d). Knowing that sea ice has
a lower salinity (�6 psu) than Arctic sea water (�33 psu),
an increased sea ice mass means that the underlying ocean
should be saltier if more ice freezes. This expected devel-
opment of the ocean salinity can be found in the surface
salinity fields.

Figure 8. Sample ice thickness and surface salinity at the end of the experiment, day 342 in 1990. Grey
lines denote the ice edge. (top) Ice thickness and (bottom) sea surface salinity. (left) Free-run experiment
and (right) experiment SW.
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[62] The free-run experiment, having lower ice mass,
shows generally lower salinity values in the central Arctic
Ocean than what is seen in assimilation experiment SW.
This is, again, especially pronounced north of Greenland
and the Canadian Arctic Archipelago, where more ice mass
is located in the assimilation experiment (note for instance
the location of the 29 and 31 psu isohaline north of the
Canadian Arctic Archipelago).
[63] On the other hand, the sea surface salinity can be

seen to be lower between Svalbard and Frantz Josefs Land.
The reason for this is due to ice exported from the Arctic
into the Barents Sea, as the thick ice melts in the Barents
Sea the assimilation experiments show a lower sea surface
salinity here. Similarly the Fram Strait region has a lower
salinity in the assimilation experiment as well.
[64] It is interesting to note that the meridional over-

turning and the meridional heat transport (not shown)
changes very little in the assimilation experiments, relative
to the free-run experiment. It is expected that the export of
thicker ice into the Greenland Sea would modify deep water
formation there, and so could affect the overturning. On the
other hand, the time frame of our experiment (one year) may
be to short to see the effect of the added freshwater flux into
the Greenland Sea.
6.2.3. Pan-Arctic Section Results
[65] The assimilation also affects the deeper layers of the

ocean model, but to a much smaller degree than at the
surface. The temperature and salinity of the deep model
layers remain virtually unchanged, and the main changes to
these variables occur in the mixed layer of the ocean.
[66] In hybrid and isopycnal models the layer interfaces

can move up or down in the water column as a result of
mass fluxes, so the assimilation can influence the interfaces
between model layers. The main changes in the deep ocean
are in the thickness of the ocean layers. Illustrations of the
changes to the ocean layers are shown in Figure 10b for day
34 and in Figure 10a for day 314, along with the changes in
ice thickness at those times. The black line denotes the
situation before the assimilation, and the grey line denotes
the situation after the assimilation. The section used is
depicted in Figure 1. The section goes from the northern
coast of Norway, through the Barents Sea and across the
Arctic Ocean.

Figure 9. Ice extent from the free-run (solid line with squares), the PW (dashed black line), and SW
experiments (solid gray line).

Figure 10. Interfaces between layers of the ocean model
along with ice thickness, for the section in Figure 1. The
plots show the ice thickness and layer interfaces before
(black) and after (grey) the assimilation in experiment SW.
(a) Situation on Julian day 314 in 1990. (b) Situation on
Julian day 34 in 1990.
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[67] The experiments show that the changes to the ocean
layer interfaces are largest in the beginning of the experi-
ment, for instance on day 34, depicted in Figure 10b.
Toward the end of the experiment, the assimilation of ice
thickness has very little impact on the deeper ocean layers,
although they can give relatively large changes to non-z-
level layers closer to the surface.
[68] It is hard to make any suggestions to physical

mechanisms which lead to the covariance between layer
thickness and ice thickness in these plots. For instance, on
day 34 the increased ice thickness after the assimilation
seems to result in lifting of the isopycnals in the waters of
Atlantic origin north of the Barents Sea. On the other hand,
on day 314 there is the opposite effect where a decreased ice
thickness also leads to a slight lifting of the isopycnals. It is
possible that large-scale effects makes it difficult to connect
local changes to the ice thickness to local changes to the
isopycnic layers. For instance, the correlations in the en-
semble could be due to large-scale circulation changes
which in turn change the isopycnal layers in the Arctic.
This can make it difficult to connect local changes to ice
thickness (e.g., north of the Barents Sea) to local changes in
the distribution of the isopycnals. Another effect which can
make the interpretation difficult are sampling errors, which
can lead to spurious correlations in the ensemble.
[69] Overall, the changes in the deep ocean are small,

which one might expect for a 1-year experiment. In order to
properly assess any changes to the deep ocean a longer
experiment may be needed.

7. Summary and Conclusions

[70] The synthetic ice thickness assimilation has been
demonstrated in a coupled ice-ocean model, and shown to
have an impact on both the ocean and sea-ice variables. The
impact changes throughout the season, depending on the
evolution of the ensemble, and the associated prediction
errors. For instance, the prediction error depend on the
location of the ice edge and it also depends on the sea-ice
albedo feedback in summer.
[71] The cumulative effect of the ice thickness assimila-

tion was demonstrated. The ice thickness fields in the
assimilation experiment are closer to the ice thickness fields
which the synthetic observations are derived from, when
compared to the free-run experiment. The effect of the
assimilation on the sea surface salinity in the Arctic also
looks realistic, when one considers the change in ice
thickness. The thicker ice in the assimilation experiments
leads to increased salinity in much of the central Arctic, as
expected from salinity conservation of the ice-ocean system.
There is also a reduced salinity in regions of the Barents Sea
and the Fram Strait, due to the export of thicker ice in the
assimilation experiment, and subsequent melting in those
regions.
[72] The experiments also illustrate how the EnKF is

sensitive to the stochastic forcing, which is used to produce
spread in the ensemble. When the EnKF was run with
stochastic temperature forcing only, the model ensemble
underestimates the prediction error of the ensemble. Apply-
ing an additional random wind forcing component leads to
increased prediction error estimates, and generally better
results.

[73] The model experiments are done on a coarse model
grid, for a practical sea-ice forecasting system a higher
resolution is likely to be used. We can only speculate on
how this would affect our results, but as lower spatial scales
are resolved, more internal variability should be present. This
could make the system less dependent on the random forcing
which has been used here. However, as for any assimilation
method, some sensitivity experiments are needed to find a
good setup for such a system.
[74] The ice thickness estimates used here are synthetic,

and the final results from the CryoSat 2 mission may be
different. The sampling pattern used when creating the
synthetic data set should be realistic, while the error
characteristics of the sensor itself is uncertain. The errors
should, however, represent our best knowledge of the
characteristics of the CryoSat sensor. These will be refined
during the development phase of CryoSat2. Also, looking at
the ice thickness values used to create the ‘‘CryoSat’’ data,
they compare favorably to measurements based on ULS
data, see Figure 2.
[75] Irrespective of the validity of the synthetic data set

which has been used here, the experiments show that the
assimilation of ice thickness is able to correct the difference
between the model and the synthetic ice thickness. We
believe that this will still hold when the synthetic observa-
tions used here are replaced with actual ice thickness
estimates from a CryoSat mission.
[76] Assimilation of sea-ice concentration in a coupled

ice-ocean model was demonstrated by Lisæter et al. [2003].
In that study it was shown how assimilation could provide
improved estimates of sea-ice concentration. That study also
showed that the sea-ice concentration assimilation did have
an impact on sea-ice thickness. However, this mainly
occurred along the sea-ice edge, the thickness within the
ice pack was more or less unaffected. The sea ice thickness
will therefore provide a complementary data set for the
purpose of assimilating data into sea-ice models.
[77] The availability of continuous sea-ice thickness

measurements makes the ice observing missions from
ESA and NASA valuable additions to our space-observing
capabilities. The experiments done in this study show how
ice models can benefit from assimilating ice thickness
measurements, and that efforts should be continued to
further develop assimilation techniques in preparation for
missions like CryoSat2. In addition, further exploration of
the errors in altimeter retrievals should be performed, since
these are critical for data assimilation schemes.
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