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Abstract—Some applications in remote sensing require esti-
mating a field containing a discontinuity whose exact location
is a priori unknown. Such fields of interest include sea surface
temperature in oceanography and soil moisture in hydrology.
For the former, oceanic fronts form a temperature discontinuity,
while in the latter sharp changes exist across the interface be-
tween soil types. To complicate the estimation process, remotely
sensed measurements often exhibit regions of missing observations
due to occlusions such as cloud cover. Similarly, water surface
and ground-based sensors usually provide only an incomplete
set of measurements. Traditional methods of interpolation and
smoothing for estimating the fields from such potentially sparse
measurements often blur across the discontinuities in the field.

Index Terms—Curve evolution, image segmentation, image
smoothing, interpolation, level sets, Mumford–Shah functional,
sea surface temperature (SST), soil moisture.

I. INTRODUCTION

SOME remote sensing problems involve estimating a field
which contains discontinuities. Traditional methods of in-

terpolation and smoothing are often used to produce estimates
of such fields. Examples of such techniques include kriging
[1]–[6], optimal interpolation [7]–[13], smoothing by local re-
gression [14], and thin plate smoothing splines [15], [16]. Be-
cause these interpolation techniques do not account for discon-
tinuities, they blur across these boundaries when estimating the
field [6], [17]. To address this problem, we propose a solution
based on an approach that jointly locates an unknown disconti-
nuity and produces a smooth field estimate on either side of the
discontinuity. In addition, we develop a generalization which
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Fig. 1. Sample SST images obtained from a Geostationary Operational
Environmental Satellite. The dark region in the upper left on both images is
land mass, while white regions indicate missing measurements. The color bar
indicates temperature in degrees Celsius. (a) Image with 2% data missing due
to cloud cover. (b) A different image having 34% data missing.

exploits the spatial statistics of the field. In particular, we en-
force and take advantage of different prior assumptions on ei-
ther side of the discontinuity.

One application area for our work is oceanography. In this
discipline, ocean circulation [18] and, more specifically, oceanic
fronts [19]–[25] have been analyzed and modeled extensively.
An oceanic front, such as the Gulf Stream’s north wall which
separates regions of warm and cold waters in the North Atlantic,
provides a strong current which results in a temperature dis-
continuity perpendicular to the front. Determining the location
of these ocean surface features not only helps the field estima-
tion process, but is of practical significance in itself in marine-
based transportation, fishery, and oil exploration. Estimating the
field on both sides of these fronts is useful to gain a better
understanding of events such as coral reef bleaching [26] and
global climate changes [27]. Sea surface temperature (SST) is
often used to observe fronts and ocean circulation. SST can
be measured by ship- or aircraft-based hydrographic surveys,
or by satellite-based infrared (or microwave) sensors. While
the former only offer sparse and irregular sampling patterns
concentrated mostly along commercial ship lanes, the satellite
measurements, which have maximum spatial resolution of ap-
proximately 5 km, are significantly attenuated by atmospheric
water vapor and droplets, resulting in large data voids. These
regions of missing observations are often common over oceanic
regions covered by clouds over periods as long as weeks, thus
making the localization of oceanic fronts a nontrivial problem
[24]. For illustration, Fig. 1(a) shows an SST map for a region
adjacent to the Atlantic seaboard showing the Gulf Stream’s
north wall when 2% of the data points in the ocean are unob-
served. Fig. 1(b) shows another image with more cloud cover,
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resulting in 34% data missing. Given such data, the problem is
to estimate the location of the north wall as well as the under-
lying temperature field, interpolating over regions of missing
observations.

Another application area for our techniques is hydrology.
Work has been done in this area to investigate methods of
estimating soil moisture fields [28], a problem in which mea-
surements may be incomplete (e.g., due to a sparse set of
ground sensors). Variations in soil moisture can significantly
impact the climate and land use [29]–[33]. Hence soil moisture
estimation is of interest. Different soil textures tend to have
different levels of water saturation [34]–[36]. As a result, mois-
ture fields tend to exhibit clear discontinuities at the boundary
between soil types.

Kriging is commonly used to deal with missing mea-
surements in both oceanographic and hydrological studies
[37]–[40]. This method, also referred to as optimal analysis
[7], [8], attempts to provide a smooth estimate of the field.
The technique is similar to the update step of the Kalman
filter [41], [42], where observations are incorporated in the
estimation problem. Although some alternatives and variations
of interpolation and smoothing have been proposed [6], [43],
[44], none of the earlier methods account for discontinuities
within the data. Recently, Stephenson et al. [17] have proposed
a method that handles discontinuous spatial fields. Citing the
poor performance of kriging when the field is nonstationary and
the need for some method to handle fields with discontinuities,
they use the Bayesian partition model of Denison et al. [45] to
define a set of disjoint regions obtained using a Voronoi tes-
sellation. Each region is assumed to have stationary statistics,
but discontinuities are allowed across the region boundaries.
One limitation of this method is that regions are constrained to
be polygons. In reality, the shape of field discontinuities is not
so constrained. The method we propose has the advantage of
handling field estimates having a broader set of discontinuities.

Our first contribution involves applying the Mumford–Shah
model [46], [47], currently used in photographic and medical
imaging, to applications within oceanography and hydrology. In
this framework, we formulate the problem of joint boundary lo-
calization and field estimation as an optimization problem. The
resulting objective functional contains terms that impose data
fidelity, as well as indicate a preference for relatively smooth
boundaries and smooth fields on either side of the boundary.
From an estimation-theoretic standpoint, the preference for
smooth fields can be viewed as a specific prior on the first- and
second-order statistics of the field. The optimization problem
is solved numerically using a coordinate descent strategy and
active contour methods [48], [49].

Next, motivated by the desire to incorporate different types
of first- and second-order statistics on either side of a disconti-
nuity, we propose a generalization of the Mumford–Shah func-
tional, which we henceforth call the modified Mumford–Shah
(MMS) functional. The MMS functional allows for more gen-
eral priors based on the statistics of the regions, which is par-
ticularly useful when the statistics are spatially varying within
each region. For example, in the oceanographic application, the
underlying SST field is known a priori to be colder as we move
north of the Gulf Stream’s north wall and warmer as we move
south. We show that by simply providing a prior mean which is
a piecewise linear function of the distance from the temperature

discontinuity, we obtain a better estimate of sea surface temper-
atures and of the discontinuity. Development of the MMS func-
tional constitutes our second contribution.

In Section II, we introduce the technique of active contours,
a method which we incorporate in our algorithm to solve
our optimization problem. In Section III, we describe the
Mumford–Shah functional, explaining how it locates a dis-
continuity and estimates a field without smoothing across the
boundary. In Section IV, we propose the MMS functional and
explain how this may be more appropriate when specific spatial
statistics are known. In Section V, we present experiments on
synthetic and real SST measurements, as well as simulated
soil moisture data. Using these experiments, we compare the
results of our techniques against three existing methods of
interpolation and smoothing. Section VI summarizes the paper
and discusses possible extensions of this work.

II. ACTIVE CONTOUR METHODS

Active contours [48]–[54] are curves which evolve to
minimize an associated objective functional that incorporates
constraints from available data (e.g., imagery). The goal of this
technique is to obtain a segmentation (i.e., locate a boundary)
in the spatial field or image of interest. Mathematically, this
amounts to determining

where represents the segmentation and is the energy func-
tional to be minimized (on which we will have more to say in
subsequent sections). If we introduce an iteration time param-
eter , we may evolve our curve according to a differential equa-
tion of the form

(1)

where is a force functional. Choosing as the first
variation of allows the curve to move in the direction
of steepest descent. The curve is evolved until steady-state is
reached (i.e., ).

The evolution of such a contour can be performed in a variety
of ways. One standard approach involves discretizing the curve
into a set of marker points that are moved from iteration to iter-
ation [48], [55]. At each iteration, a curve can be constructed by
some method of interpolation. Kass [48] parameterizes an initial
curve and moves individual marker points to evolve the curve.
The evolving curves in such approaches are commonly referred
to as “snakes.” This technique has several drawbacks [56], [57].
First, nothing in the equations of motion prevent the discretized
points from moving together, leaving an unevenly discretized
curve. Second, stable evolution requires a very small time-step.
Third, marker points cannot easily handle changes in topology
of the evolving curve. Some modifications may help to remedy
these problems, such as more frequent resampling of the points
on the curve to redistribute them evenly. However, the added
complexity leads many to consider alternate methods. One such
technique, which we use for our curve evolution, involves level
set methods. Level set methods, developed by Osher and Sethian
[58], [59], provide a robust way of evolving a contour because
they handle topological changes seamlessly and do not require
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labels or marker points. Instead of evolving discretized points on
the curve, level set methods evolve a surface whose zero level
set represents the curve.

Obviously the choice of the functional greatly impacts
the nature of the curve or level set evolution equation and the
resulting segmentation obtained through minimization. In the
following sections, we describe two different functionals that
we use to solve our estimation problem.

III. MUMFORD–SHAH FUNCTIONAL

To accomplish joint field estimation and boundary localiza-
tion simultaneously, we describe a functional which depends on
both the boundary and the field on either side of the boundary.
In this formulation, the minimized functional yields a local-
ization of the boundary (e.g., an oceanic front) and a field
estimate (e.g., sea surface temperature) simultaneously. The
Mumford–Shah functional [46], [47], also referred to as a weak
membrane model by Blake and Zisserman [60], is one example
of a functional dependent on both the curve location and field
values.

Mathematically, the Mumford–Shah functional is a
three-term energy functional defined by

(2)

where is the overall two-dimensional spatial region of in-
terest, is the subset of where data are available, represents
a two-dimensional position vector, denotes the arc length, is
the unknown field to be estimated, is the unknown boundary
to be estimated, is the observed data, and , , and are non-
negative tunable parameters. The parameters provide two de-
grees of freedom (the choice of and is invariant to scale,
so the two independent parameters could be and ) for
the user to vary depending upon which terms one wants to place
higher confidence. This freedom may be desirable in adapting
the technique to particular applications and tasks, as a user can
tune the parameters as needed on a few test cases before using
these values on a larger set of examples.

The specific choice of parameters is context-dependent (e.g.,
for our applications, it depends on the magnitude of observation
noise, the typical length of the boundaries in the field, and the
degree of smoothness of the field). Moreover, the automatic
choice of parameters is an open problem and beyond the scope
of this paper. However, it has been a subject of much previous
work in other applications where similar variational techniques
are used [61]–[67]. The methods described in these works,
such as ordinary and generalized cross-validation [61]–[64],
the L-curve method [65], [66], and the discrepancy principle
[66], [67], are different algorithms used to determine a set of
parameters. These methods have been used for parameter selec-
tion in variational techniques applied to problems in computer
vision [48]–[50], [53], [54], [60], [68]–[71] and can be applied
similarly to earth science applications within the framework we
propose in this paper.

A goal of the paper is to introduce a robust joint boundary and
field estimation framework for geoscience problems, allowing
users the flexibility to choose parameters as appropriate based
on the application. The functionals we introduce have parame-
ters that can be determined by one of the methods cited above or
by other ad hoc approaches that may suit a particular problem.

In our applications, represents the sea surface temperature
or soil moisture, while represents the location of the dis-
continuity in the field, representing the oceanic fronts or the
interface between soil types. The first term in the functional
is known as the data fidelity term. This term penalizes devia-
tions of the estimated field from the observed data. The second
term penalizes the gradient of the field everywhere except across
the boundary, thus enforcing smooth fields on either side of
the boundary while not penalizing a potentially sharp disconti-
nuity across the boundary. Finally, the third term penalizes curve
length. Without this term, can be minimized to zero
by having boundaries everywhere, which is not a useful solu-
tion. The addition of this regularization term helps to capture the
physical characteristic of producing smooth, rather than jagged
estimates of oceanic fronts and soil boundaries.

We minimize a discretized version of to obtain the
field and boundary estimate. The discretization, which involves
sampling the continuous region on an equally spaced spatial
grid, yields

(3)

where the matrix is the discrete representation of the gra-
dient operator, and are the regions on either side of the
boundary, and are observations lexicographically un-
wrapped and written in vector form, and are similarly
unwrapped vectors, and represents the length of . In (3),

associates with the associated observation (i.e., if
the th observation in corresponds to a measurement of the

th element of , then , and it is only these en-
tries of that are nonzero). So, represents
the sum of squares of the differences between observed sam-
ples and the corresponding field estimate , where

denotes the spatial locations where we have observations.
Minimizing the Mumford–Shah functional produces a piece-

wise smooth field estimate. Tsai et al. [69] and Chan and Vese
[70] describe active contour implementations which minimize
the Mumford–Shah functional. Other related formulations have
been introduced which also address the issue of simultaneous
boundary and field estimation. Functionals proposed by Chan
and Vese [70] and Yezzi et al. [71] apply the more restrictive
assumption of a spatially constant field estimate on either side
of the boundary.

When viewed as solving a maximum a posteriori (MAP) es-
timation problem, Mumford–Shah enforces a Gaussian prior
on each region, with an inverse covariance, or information ma-
trix, of [from (3)] and a spatially constant mean. Hence,
Mumford–Shah provides one particular prior on the field. Moti-
vated to use different priors on the field (e.g., those more appro-
priate for our target applications), we propose a generalization
of Mumford–Shah, which we describe in the next section.
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IV. MODIFIED MUMFORD–SHAH FORMULATION

In the Mumford–Shah formulation shown in (3), the terms
containing impose a particular prior covariance and a spatially
constant mean. Sometimes, a more accurate, yet still simple,
prior model may be available. For instance, sea surface tem-
peratures have spatially varying means. More specifically, we
expect temperatures north (south) of the Gulf Stream’s north
wall to decrease (increase) as a function of the distance from
this discontinuity. Furthermore, an information matrix different
from the of (3) may provide a better characterization of
the second-order statistics within the regions. In this section,
we propose a generalization of the Mumford–Shah functional
which incorporates general first- and second-order statistics of
the field on either side of the discontinuity.

We note that the modified Mumford–Shah approach we dis-
cuss in this section and Mumford–Shah work well if the true
field and boundary fit the underlying model. Namely, in these
approaches, we assume; 1) a measurement model which has ad-
ditive Gaussian noise; 2) piecewise smooth fields (this actually
does not need to be a limitation if we do not require that be
a derivative operator); and 3) smooth curves for the boundary.
If the desired field is not smooth, the boundary is expected to
be jagged, or the measurement model is not Gaussian, then we
do not expect good results using these two approaches. How-
ever, we find that smoothness assumptions (on the field and
boundary) are reasonable in a variety of applications, such as
the ones we examine in the experiments.

A. Energy Functional

We first introduce the MMS functional in continuous form

(4)

In this equation, is an arbitrary linear differential operator
(where the higher the order of the derivatives, the more smooth
the field estimate), and are spatially varying
mean functions in the respective regions. In particular, we model
the means as functions of the distance from the boundary. So,

, where is the distance of point
to , and can be an arbitrary function (e.g., when we apply

this to SST data, we choose , an affine func-
tion, where and are determined from historical data). The
function allows for a more general dependency be-
tween points within the same region than Mumford–Shah does.1

1Note that b must be a positive semidefinite function.

The data fidelity and curve length terms of the MMS functional
are the same as those in Mumford–Shah. However, we replace
the second term in (2) with terms which incorporate the prior
means and and an arbitrary linear differential oper-
ator on the field . For perspective, this functional reduces
to the Mumford–Shah functional in the special case where the
means are zero, the operator is the gradient operator, and is
the Dirac delta function. Various possibilities for the priors exist
(e.g., historical data can be used to estimate the mean and co-
variance) [72]–[76]. In our examples, we make specific choices
for these parameters to illustrate the characteristics and advan-
tages of this approach. The MMS functional yields improved
results over Mumford–Shah whenever we can accurately cap-
ture the spatial variability through the appropriate selection of

, , and . We now describe how (4) is minimized numer-
ically using coordinate descent.

B. Numerical Solution

Ideally, we wish to solve for and simultaneously. How-
ever, given that the gradient of is not easily at-
tainable, we approach the solution to this problem using the
technique of coordinate descent. This method is an iterative ap-
proach in which at each step, all but one of the varying param-
eters is held fixed, while the remaining parameter is updated in
a manner which decreases the functional. Within each iteration,
each of the parameters is updated exactly once.

Using this technique, we divide each iteration into two main
steps. First, having fixed, we compute the value of which
minimizes for the particular value of .2 Then,
with fixed, we evolve in the direction of the first varia-
tion of with respect to . For this curve evolu-
tion step, we ideally want both and to vary with the curve,
since both can in general be functions of . However, for com-
putational simplicity, we hold and fixed as we evolve and
then recompute and to accurately reflect the new position
of before the next iteration. The use of this approximation
does not appear to adversely affect the convergence to a solu-
tion. The iterative process is repeated until we converge to an
equilibrium. The method of coordinate descent does not guar-
antee convergence to the global minimum, but given a reason-
able choice of initialization, our algorithm appears to converge
to a sufficiently good solution as seen from the experiments in
Section V. The full derivation of the numerical solution may be
found in Appendix I.

V. EXPERIMENTAL RESULTS

We perform experiments on SST data and soil moisture
maps. We demonstrate the advantage of using our simultaneous
boundary detection and field estimation method by comparing
results from Mumford–Shah and MMS to existing techniques
of kriging, gradient smoothing, and smoothing splines. These
existing methods fundamentally have no provision to handle the
presence of discontinuities. The illustrations from our results
show how the failure to handle discontinuities leads to blurring
across the boundaries. In the first example involving soil mois-
ture, we demonstrate how Mumford–Shah and MMS do better

2One could take a gradient step in the direction which decreases the functional
rather than find the minimum and still attain a solution [57], but we actually
solve for the minimizing f in each step.
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Fig. 2. Estimation of soil moisture in an example where 90% of the data
are observed. Images show fractional volume of water in the soil. (a) The
original soil moisture map with color bar (color bar valid for all images) and
true boundary overlaid. (b) The observed data. (c) Estimate using kriging.
(d) Estimate using gradient smoothing. (e) Estimate using smoothing splines
with second-order derivatives. (f) Field estimate using Mumford–Shah.
(g) Field and boundary estimates using Mumford–Shah. (h) Field estimate
using MMS. (i) Field and boundary estimates using MMS.

than other interpolation techniques.3 In the second example
involving SST maps, we show how MMS can exploit spatially
varying statistics to yield better results than Mumford–Shah,
which in turn provides better results than the other interpolation
methods. Before presenting the results, we note that the tunable
parameters , , and in (2) and (4) have been subjectively
chosen to provide reasonable results. Similarly, the choices
of parameters for the methods we compare against, namely
kriging, gradient smoothing, and smoothing splines, have been
made with an attempt to provide as good results as possible.

A. Simulated Soil Moisure Data

We examine soil moisture measurements generated from a
simulation (more samples of this simulation can be found in
[77]) based on the Community Land Model (CLM), a model
designed at the National Center for Atmospheric Research
(NCAR) [78]. The CLM produces variable soil moisture in
a spatial domain having different soil types. While the data
used originated from a simulation, we note that when raw data
are collected from passive instruments, brightness temperature
is generally recorded. To convert this data to soil moisture, a
radiative transfer model is often used [79].

The particular simulation we consider assumes a uniform spa-
tial distribution of rainfall. After time elapses from a period of
rainfall, the surface soil moisture of the sand region tends to be
much drier than any of the other soil types present. As a result,
we pose the problem of segmenting the boundary (at a given
time after a recent rainfall) between two regions, the first con-
taining sand and the second containing other soil types, as well
as estimating the soil moisture in each of these regions. Fig. 2(a)
shows an example of a soil moisture map with the boundary

3Because we assume mean-statistics are not spatially varying, we expect
Mumford–Shah and MMS to yield similar results for this example.

TABLE I
STANDARD ERROR PER PIXEL BETWEEN THE FIELD ESTIMATES AND A

SMOOTHED VERSION OF THE SIMULATED OBSERVATION. NOTE THAT

THE VARIATIONAL METHODS WE PROPOSE HAVE SMALLER ERRORS

(given from the simulation) separating the sand region from the
other soil types.

For the field estimates, the particular simulation we use is at
a much finer spatial scale than the field information we want
to capture. Hence, the simulation essentially provides a noisy
version of the coarser scale soil moisture field we are interested
in estimating. Thus, to evaluate field estimation accuracy, we
compare the resulting estimates with a coarser scale version of
the simulations obtained using gradient smoothing as shown in
(5) within each of the regions (assuming that the boundary is
known).

For the MMS method, we compute the mean moisture for
sand and that for the other region from simulated data and
use these as values for and in (4), respectively. For
this application, the means are chosen to be spatially non-
varying because at this scale, no systematic variability can be
discerned from the mean field. We choose to be the second
derivative operator and to be the Dirac delta function. The
choice of a second derivative operator for means we enforce
an even greater amount of smoothness than that obtained in
Mumford–Shah, which uses a first derivative operator.

To provide perspective for how well the estimation methods
which explicitly consider boundaries perform, we compare the
estimation of the field using Mumford–Shah and MMS with a
few standard methods of interpolation and smoothing. In par-
ticular, we consider kriging [1], [3], [6],4 gradient smoothing
[16], and a second-order smoothing spline [15]. In essence, gra-
dient smoothing involves applying Mumford–Shah without any
notion of a boundary. Mathematically, the gradient smoothing
method minimizes

(5)

where the variables are as defined previously. Similarly, the
second-order smoothing spline minimizes

(6)

as set forth in Wahba and Wendelberger [15] (where
). This method is similar to MMS for the choice of

and mentioned above except that it ignores the possible
presence of boundaries.

4The kriging results were obtained using ordinary kriging with nugget effect
using a 5� 5 window of neighbors for prediction. Other methods of kriging can
be considered. See the MATLAB Kriging Toolbox (http://globec.whoi.edu/soft-
ware/kriging/V3/intro_v3.html) for different options.
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We consider three examples having different coverages of ob-
served data. For the first example, we consider the case where
90% of the region is observed [Fig. 2(b)]. Fig. 2(c) shows the
interpolation resulting from kriging, Fig. 2(d) illustrates the es-
timate from gradient smoothing, and Fig. 2(e) shows the result
from second-order smoothing splines. In these three cases, some
of the measurement noise, apparent from Fig. 2(a), is removed,
but the discontinuities are slightly blurred.

Fig. 2(f) shows the field estimate using Mumford–Shah,
while Fig. 2(g) shows the same estimate with the boundary
overlaid (for reference). Similarly, Fig. 2(h) shows the field es-
timate using MMS, while Fig. 2(i) shows the estimate with the
boundary overlaid. A binary threshold was used to determine
the initial boundary for the active contour evolution. These
results illustrate that Mumford–Shah and MMS can locate the
boundary and produce field estimates that maintain a sharp tran-
sition at the region boundaries. In addition, we note that through
the use of level set methods [58], [59] for our curve evolution,
we are able to detect boundaries which are not simple closed
curves, as shown in Fig. 2(g) and (i). Quantitatively, Table I
shows the standard error per pixel for the variational techniques
as well as the traditional methods. From these results, it can be
seen that the errors from the variational techniques we propose
are smaller than those from the traditional methods.

To compare the accuracy of the boundary localization, we
first need to find a way to generate a boundary from the field es-
timates of the traditional approaches. A direct approach involves
using adaptive binary thresholding, where for each instance, we
find the threshold which most closely matches the ground truth
according to a normalized symmetric difference (NSD) mea-
sure, which we define as

NSD (7)

where represents the complement of region and is
the area of region . After boundary localization through such
manual adaptive processing, we quantify the closeness of the re-
sulting boundary to the truth by computing NSD. This process is
in practice unrealizable since we do not necessarily have ground
truth. Thus, the boundaries from the traditional approaches are
actually the best case results that can come from these methods.
We also use the same measure for the boundaries generated by
our proposed techniques. For the boundaries shown in Fig. 3,
the NSD for the boundary determined using kriging is 0.3469,
that for gradient smoothing is 0.4158, and that for second-order
smoothing splines is 0.4105. In contrast, the NSD for Mum-
ford–Shah is 0.1502, while that for MMS is 0.1789. Hence, our
proposed methods do better in finding boundaries than the tradi-
tional approaches. Note that for the soil moisture examples, we
do not expect MMS to necessarily outperform Mumford–Shah
because the fields are assumed to have spatially constant means
(unlike the SST example described in the next section).

For the second example, we consider the situation where a
large rectangular region is unobserved, as shown in Fig. 4(b)
[compare with the full observation in Fig. 4(a)]. This may
simulate a scenario where blocks of measurements are locally
obtained by regional stations, but because of a gap in the spatial
coverage of the stations, certain areas are unobserved. Again,
Fig. 4(c)–(e) shows interpolations using kriging, gradient
smoothing, and second-order smoothing splines, respectively.
In all three images, we observe a smooth estimate in the missing

Fig. 3. Estimates of the boundary between soil types given the observation
shown in Fig. 2. (a) The original soil moisture map with true boundary shown.
(b) Estimate using kriging. (c) Estimate using gradient smoothing. (d) Estimate
using smoothing splines. (e) Estimate using Mumford–Shah. (f) Estimate using
MMS.

Fig. 4. Estimation of soil moisture. Images show fractional volume of water
in the soil. (a) The original soil moisture map. (b) The observed data, a moisture
map with a rectangular region unobserved (representing 81% observed data).
(c) Estimate using kriging. (d) Estimate using gradient smoothing. (e) Estimate
using smoothing splines with second-order derivatives. (f) Field estimate using
Mumford–Shah. (g) Field and boundary estimates using Mumford–Shah.
(h) Field estimate using MMS. (i) Field and boundary estimates using MMS.

rectangular region as well as a smoothing of the observed data.
Furthermore, as expected, the discontinuity at the soil boundary
is not well-defined in the missing region for any of these three
field estimates.

Fig. 4(f) shows the field estimate using Mumford–Shah with
the boundary localization overlaid in Fig. 4(g), while Fig. 4(h)
and (i) shows the same using the MMS functional. As the initial-
ization for the curve evolution of Mumford–Shah and MMS, we
again use a threshold of the moisture data where there are ob-
servations. Across the unobserved block, we linearly interpolate
the thresholded boundary. The results from Mumford–Shah and
MMS preserve the boundary between the two soil types, which
lead to more accurate field estimates. In particular, Fig. 4(f) and
(h) does not exhibit blurring across the soil boundaries, which
is the case in Fig. 4(c)–(e). Table I summarizes the results, con-
firming that our proposed methods yield smaller error than the
traditional approaches.
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Fig. 5. Estimates of the boundary between soil types given the observation
shown in Fig. 4. (a) The original soil moisture map with true boundary shown.
(b) Estimate using kriging. (c) Estimate using gradient smoothing. (d) Estimate
using smoothing splines. (e) Estimate using Mumford–Shah. (f) Estimate using
MMS.

TABLE II
NORMALIZED SYMMETRIC DIFFERENCE BETWEEN TRUE BOUNDARY

AND ESTIMATED BOUNDARY. FOR THE 90% OBSERVED EXAMPLE, WE

SEE THAT MUMFORD-SHAH AND MMS DO MUCH BETTER

THAN THE TRADITIONAL METHODS WHILE FOR 81% OBSERVED,
THESE TWO METHODS DO SLIGHTLY BETTER

Again, we evaluate the boundaries using binary thresholding.
For the boundaries shown in Fig. 5, the NSD for the boundary
determined using kriging is 0.4327, that for gradient smoothing
is 0.3519, and 0.3569 for second-order smoothing splines. In
contrast, the NSD for Mumford–Shah is 0.2909, while that for
MMS is 0.3469. Table II summarizes the results of the boundary
estimates for these two examples.

In our third example, we simulate the situation where we
have a sparse set of sensors to collect measurements. In par-
ticular, suppose our observations are 11% of the spatial field
of interest, as shown in Fig. 6(b). Fig. 6(c) shows the result
using kriging, Fig. 6(d) shows the field estimate using gradient
smoothing, while Fig. 6(e) illustrates the result using second-
order smoothing splines. As one would expect, each of these
three methods smoothes the region between the sparse set of
observations.

Now, given the measurements alone, it would be difficult to
find a reasonable initialization for the curve evolution methods
(Mumford–Shah and MMS). So suppose that we have some
knowledge of the boundary, either from a segmentation of the
same spatial domain at a previous time in the current observation
sequence or from an ensemble of historical data. In our exper-
iments, we take the segmentation from a different simulation
of this region and use this as the initialization. With this as a
starting point, we show that we can provide a reasonable esti-
mate for the boundary location as well as a field estimate of the
spatial domain that appears more accurate than the conventional
methods shown in Fig. 6(c)–(e).

Fig. 6(f) shows the result using Mumford–Shah [boundary
shown in Fig. 6(g)], while Fig. 6(h) and (i) illustrates the same

Fig. 6. Estimation of soil moisture where only a sparse set of measurements
are made. Images show fractional volume of water in the soil. (a) The original
soil moisture map with color bar (color bar valid for all images in this figure).
(b) Observed data representing 11% of the entire spatial field. (c) Estimate using
kriging. (d) Estimate using gradient smoothing. (e) Estimate using smoothing
splines with second-order derivatives. (f) Field estimate using Mumford–Shah.
(g) Field and boundary estimates using Mumford–Shah. (h) Field estimate using
MMS. (i) Field and boundary estimates using MMS.

using MMS. In Mumford–Shah and MMS, the field is smoothed
within each region, but the discontinuity is preserved. Further-
more, finding the optimal field for each region separately pro-
vides a more accurate moisture estimate for both regions.

Given a sparse dataset such as this example, localization of
the boundary would be difficult without a good initialization.
However, the purpose of this example is to illustrate that, by
incorporating any available prior information, our method uses
this knowledge to provide an improved boundary estimate based
on the measurements as well as a reasonable estimate of the
field.

Before we conclude this discussion on soil moisture data, we
discuss the computational complexity of each of the methods
analyzed. The following computation times are obtained using
a desktop personal computer having a Xeon 2.2-GHz processor
running MATLAB version 6.5 on a Linux OS. The computed
times are based on the time required to produce a field estimate
of the soil moisture maps as shown in Fig. 4. The soil moisture
field consists of a 64 64 grid of pixels. Kriging requires 8.56 s
to produce the field estimate, while gradient smoothing takes
1.75 s. Iterating Mumford–Shah for 100 steps (an approximate
time for convergence) requires 20.53 s.

Mumford–Shah uses first derivatives for interpolation in
a manner similar to that in gradient smoothing. Although
Mumford–Shah has greater computational complexity, it pro-
vides an improved field estimate over gradient smoothing.
Furthermore, Mumford–Shah performs the additional task of
localizing the boundary. To provide a similar comparison with
second-order smoothing splines, we choose the second deriva-
tive operator for in MMS for our analysis. Second-order
smoothing splines requires 10.73 s, while the computation time
for MMS for this choice of is 32.98 s for 100 iterations.
MMS results in somewhat higher computational complexity
than second-order smoothing splines. However, in return it
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Fig. 7. Boundary and field estimation of synthetic SST field (temperatures in
degrees Celsius). (a) The original synthetic field to be estimated (dark mass
at top left is land). (b) Simulated measurements containing additive IID noise.
(c) Field estimate using MMS with boundary overlaid. Note that this estimate
removes some of the IID measurement noise.

provides an improved field estimate as well as boundary
localization.

B. Sea Surface Temperature Data

In soil moisture estimation, because each soil type has a mean
that does not vary systematically, Mumford–Shah and MMS
yield similar results. However, in the oceanographic applica-
tion we consider here, it is known that sea surface temperatures
vary spatially in a systematic manner. In the following anal-
ysis of SST measurements, we show that in an application with
spatially varying fields, MMS provides better estimates than
Mumford–Shah.

1) Synthetic SST Data: We initially analyze a synthetic data
sequence designed to simulate a region in the North Atlantic.
First, we define a temperature discontinuity characteristic of
an oceanic front. From this, a spatially varying mean tempera-
ture map is generated using the following assumptions: 1) south
of the discontinuity, the mean temperature is

degrees Celsius, where is the dis-
tance in kilometers of the point from the front and 2) north
of the discontinuity, the mean temperature is

degrees Celsius. We use a linear temperature
model because we assume that we are operating in the linear
portion of a particular temperature model ,
where is degrees latitude and is the equatorial temperature.
This model is obtained as an approximation of surface temper-
ature based on a one-dimensional energy balance model of cli-
mate [80], [81]. Next, we define a Gaussian covariance matrix
for each region to enforce correlation between nearby points.
In particular, we choose (where

is the distance in kilometers between and ) for points
and on the same side of the boundary.5 Using these assump-

tions, our synthetic temperature map is generated and shown
in Fig. 7(a). Finally, independent, identically distributed pixel-
wise white noise with zero mean and standard deviation of two
is added to simulate measurement noise. Fig. 7(b) shows such
synthetically generated measurements.

First, we apply the MMS functional to the dataset shown in
Fig. 7(b). Again, we make the assumption that in (4) is the
Dirac delta function. However, instead of choosing the differ-
ential operator , we assume we know the true covariance
(given , this choice of implicitly determines the choice of

). The results of the field estimation are shown in Fig. 7(c),
with the estimated boundary overlaid. From this image, we ob-
serve that the MMS method localizes the boundary and substan-

5The multiplicative constant 0.02 in the exponential was chosen so that there
would be some dependencies beyond just the neighboring pixels, but it had to be
chosen carefully to ensure thatK was a mathematically valid covariance [82].

Fig. 8. Boundary and field estimation of synthetic SST field. (a) The
measurement data are as in Fig. 7(b), except that a triangular region is
unobserved. (b) Field estimate using kriging. (c) Field estimate using gradient
smoothing. (d) Field estimate using second-order smoothing splines. (e) Field
and boundary estimate using the Mumford–Shah functional. Note that the
boundary is a straight line across the region of missing observations. (f) Field
and boundary estimate using the MMS functional.

TABLE III
STANDARD ERROR IN THE INTERPOLATED TRIANGULAR

REGION AND ENTIRE IMAGE AS SHOWN IN FIG. 8

tially reduces the noise in the field (quantitatively, the reduction
in standard error is 26%).

Satellite measurements have unobserved regions due to a
combination of cloud cover and the limited range of the satel-
lite’s swath. Motivated by this fact, we generate an example
where a spatial field is not fully observed by using the previous
simulation of Fig. 7 and assuming that a large triangular region
is unobserved. This is shown in Fig. 8(a), where the area with
no measurements is shown in white. As with the soil moisture
examples, we compare the joint boundary and field estimation
techniques with three traditional methods of interpolation. In
particular, we apply kriging [Fig. 8(b)], gradient smoothing
[Fig. 8(c)], and second-order smoothing splines [Fig. 8(d)] to
the observation shown in Fig. 8(a). In comparison with the
true field in Fig. 7(a), we observe that the field estimates using
kriging, gradient smoothing, and smoothing splines do not
accurately preserve the boundary in the unobserved region.

Fig. 8(e) shows the result using the Mumford–Shah func-
tional from (2), while Fig. 8(f) shows the outcome using the
MMS functional proposed in (8). For the latter, and

are the mean and covariance statistics, respectively,
used in the simulation shown in Fig. 7(a). Note that in the
regions of missing observations, the estimate using MMS
and Mumford–Shah both provide a smooth temperature map.
However, the estimated curves differ in the unobserved region.
With Mumford–Shah, the estimated curve is almost a straight
line across the missing observations. This occurs because the
primary force in this region is due to the curve length penalty.
However, with MMS, the curve exhibits characteristics more
similar to the true boundary seen in Fig. 7(a). More importantly,
the MMS result demonstrates that the estimate is consistent
with the prior model on the field (i.e., the piecewise linear
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Fig. 9. Demonstration of curve evolution using the MMS functional. (a) The initial boundary, which is a straight line overlaid on the measurement data.
(b) An intermediate step in the evolution. (c) A later intermediate step in the evolution. (d) Final boundary in the curve evolution process.

Fig. 10. Sensitivity analysis for initializations and parameter choice. (a) The
field and boundary estimate of Fig. 7 using � = 0:7, � = 0:8, and  = 8.
(b) Graph which shows band of possible initializations which result in the
estimate in (a). (c) Result when the curve length parameter  is set to 16.
(d) Result when the curve length parameter  is set to 40. (e) Result when the
data fidelity parameter � is set to 7. (f) Result when the smoothness parameter
� is set to 8.

mean assumption). In particular, the use of this prior model
results in an upward concave curve where no measurements are
present because the observations away from the boundary in
the triangular region help determine its shape in MMS.

Quantitatively, Mumford–Shah yields a standard error of 0.76
degrees per pixel (1.36 in the triangular region), while MMS has
a standard error of 0.73 per pixel (1.15 in the triangular region).
Based on these results, we determine that the main difference is
an improved boundary estimate in the unobserved area. Table III
shows the standard error exhibited by each method within the
unobserved triangular region.

To illustrate the functional minimization process, Fig. 9
shows four steps of the curve evolution process from an ini-
tial boundary [Fig. 9(a)], across two intermediate steps [first
Fig. 9(b) and then Fig. 9(c)], and the final boundary estimate
[Fig. 9(d)]. The boundary in each case is overlaid on the syn-
thetic data.

To determine the robustness of the results, we provide some
sensitivity analysis on the initializations and the choice of pa-
rameters. Using the simulated measurements shown in Fig. 7(b),
we provide some analysis of how the results change with a corre-
sponding change in parameter or initialization. Fig. 10(a) shows
the result previously shown in Fig. 7(c). For this example, the
parameters used are , , and . Regarding
sensitivity to initializations, we randomly choose 40 smooth ini-
tial curves which extend from the left edge of the image to the
right edge [one example of which is the initialization shown in
Fig. 9(a)] which lie within the two bands shown in Fig. 10(b).
For each of these initializations, the algorithm converges to an
estimate that is visibly indistinguishable from the one shown in

Fig. 11. Satellite SST estimation using MMS on GOES data with
missing observations (white regions) due to cloud cover. (a) A satellite
SST measurement with relatively few missing observations. (b) Field and
boundary estimate based on measurements in (a). (c) A different SST map
with more missing regions in the measurements. (d) Field and boundary
estimate based on the measurements in (c). (e) A third SST map with most of
the measurement information missing. (f) Field and boundary estimate based
on (e).

Fig. 10(a). Such a result indicates that the method is reasonably
robust to different initializations of the boundary. Next, we ex-
amine the effect of increasing while leaving the other param-
eters fixed. Increasing first to 16 [Fig. 10(c)] and then to 40
[Fig. 10(d)] results in a progressive smoothing of the boundary
as expected. Resetting back to 8 and setting to 7 results in
Fig. 10(e). Note that the result is noisier than Fig. 10(a) because
it adheres more strongly to the observations. Finally, having

and , we set to 8, resulting in a smooth field
estimate as shown in Fig. 10(f).

2) Satellite SST Data: To demonstrate MMS on real data,
we apply this functional to satellite SST data. In particular, we
consider satellite images of the North Atlantic Ocean. Fig. 11(a)
is a satellite image which shows a SST map having very little
missing data. In this image, the dark mass in the upper left
is land, the white regions represent missing observations, the
blue regions are regions of cool water, and the orange and red
regions are regions of warmer water. A temperature discon-
tinuity exists at the Gulf Stream’s north wall, as seen by the
sharp separation of cooler waters in the north from the warmer
waters in the south in Fig. 11(a). The satellite data are obtained
from the National Oceanic and Atmospheric Administration
(NOAA) Geostationary Operational Environment Satellite
(GOES), courtesy of the Jet Propulsion Laboratory (JPL). The
data are preprocessed using radiance measurement calibrations
as described at the GOES web site (http://goes.gsfc.nasa.gov).
Furthermore, recent works [83], [84] detail reasons (e.g., black-
body contamination) for calibration and analyze the radiometer
calibration process. For this set of data, the means were chosen
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to be linear functions of the distance from the curve, with the
parameters determined empirically from examining historical
sea surface temperature data of the North Atlantic. In particular,
the mean temperature south of the Gulf Stream’s north wall is
assumed to be degrees
Celsius, where is the distance in kilometers of the point
from the front. Similarly, the mean temperature north of the dis-
continuity is modeled as
degrees Celsius.

The covariance matrix was chosen to be the same
as that used in the previous synthetic data example

. A Gaussian covariance
is a common model for field covariance within geophysical
applications [12]. Fig. 11(a) shows a satellite SST image on a
particular day where there is only a small percentage of missing
observations due to cloud cover. By applying the MMS func-
tional, the field estimate and boundary are shown in Fig. 11(b).
For this example, the previous day’s boundary was used as an
initial estimate for the curve. The knowledge that the north
wall of the Gulf Stream does not vary much from day to day is
incorporated here to provide us with a good initialization for
the curve . Having a good initialization generally leads to
faster convergence during curve evolution.

In the previous example, the amount of missing observations
was small. In some cases, a large portion of the region of interest
may be unobserved. In these cases, the prior knowledge of the
means and covariance plays a larger role in both the interpo-
lation and boundary estimation. To illustrate, we consider SST
maps for two different days which have larger areas which are
unobserved [see Fig. 11(c) and Fig. 11(e)]. Whereas the image
in Fig. 11(a) had 87% of the spatial domain visible, the ob-
servation in Fig. 11(c) has 66% data visible and the image in
Fig. 11(e) has 19% data visible. Fig. 11(d) shows the boundary
and field estimate based on observations from Fig. 11(c), while
Fig. 11(f) shows the same given Fig. 11(e). In both of these
examples, we have used the previous day’s segmentation for
the initial curve. Although we do not have access to the under-
lying truth in this experiment, we observe that the locations and
shapes of the boundary estimates in all three examples are sim-
ilar. Because the estimate based on 19% visible observations is
similar to that based on 87%, we conclude that in the estimate
shown in Fig. 11(f), the MMS functional does well in locating
the boundary despite the sparsity of observations. In these two
cases, the prior mean, coupled with observations far from the
curve in the eastern portion of the North Atlantic, allows us to
provide a reasonable estimate of the sea surface temperature in
the unobserved regions. The field estimates also appear reason-
able when compared to the field estimate in Fig. 11(b), an esti-
mate made in the presence of most of the observations of that
frame.

We now qualitatively examine the difference between the
Mumford–Shah and MMS functionals on the GOES data.
Fig. 12 provides a visual comparison of the field estimate using
each functional based on the measurements shown in Fig. 12(a).
Fig. 12(b) shows the field estimate using Mumford–Shah. Note
that unlike the temperature estimate using MMS [Fig. 12(c)],
the isotherms shown in Fig. 12(b) are not parallel to the oceanic
front north of the Gulf Stream’s north wall. The estimate
bears this characteristic because Mumford–Shah smoothes
across the unobserved region north of the boundary. In this

Fig. 12. Visual comparison of Mumford–Shah with MMS. (a) Observed data.
(b) Field estimate of observed data using Mumford–Shah. (c) Field estimate
using MMS.

particular example, the warm observations (shown in green
and yellow) are in the western portion of the region while the
cooler observations (blue) are in the eastern part of the region.
Consequently, the temperature smoothing results in a west to
east gradient. If we examine Fig. 11(a), we see that the region
immediately north of the Gulf Stream’s north wall is generally
yellow in color. In Fig. 12(b), the region immediately north
of the north wall in the eastern portion of the image is blue,
indicating that the temperature has been underestimated. On
the other hand, MMS has the physically more consistent field
estimate which exhibits a south to north cooling as shown in
Fig. 12(c), and is yellow in the region immediately north of
the north wall. This is achieved because the MMS functional
exploits each region’s spatial statistics.

VI. CONCLUSION

We have proposed methods of estimation and interpo-
lation over a field having a discontinuity with unknown
location and arbitrary shape. The two techniques we presented,
Mumford–Shah and MMS, both solve a joint problem of
boundary localization and field estimation. These two methods
preserve discontinuities in the field. However, the benefit of our
proposed MMS technique is that it allows for the incorporation
of a variety of first- and second-order statistics. We have shown
that certain estimation problems (e.g., SST estimation) yield
improved results when the spatial statistics of the underlying
field can be included in the functional formulation. Using sea
surface temperature and simulated soil moisture data as ex-
amples, we have demonstrated the advantages of the proposed
methods over three existing techniques of interpolation and
smoothing that do not handle discontinuities.

The Mumford–Shah and MMS methods can be applied to
other applications that: 1) have distinct regions in the data and
2) require interpolation given an incomplete or sparse set of
measurements. One possible application is the estimation of
hurricane or other severe weather damage. In such problems,
given a data set of damage reports at a small set of locations,
there is a desire to locate the boundary between regions of se-
vere and less severe damage for determination of evacuation and
protection of the affected region. Furthermore, insurance com-
panies can use these methods to quickly obtain an estimate of
the damage throughout the field. So, the techniques we have de-
veloped can be used to estimate the boundary as well as the sur-
rounding field. Other earth science applications may have use
for our techniques as well. In particular, we may want to locate
the boundaries of the cusp-like structures of tropical instability
waves near the equator from ocean color data [85], or locate
rainstorms and estimate rainfall over a region using a combina-
tion of radar sensors [86].
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The MMS functional can also be modified to incorporate dy-
namic information about the boundary when this information
is available, especially when we are estimating the field and
boundary over a temporal sequence. In particular, we can re-
place the curve length penalty term of (4) with a term that pe-
nalizes deviations of the current curve from a predicted curve.
The predicted curve could, in principle, be obtained by taking
past estimates of the boundary location, and evolving them ac-
cording to the dynamics of the boundary. Having such a dy-
namic term in the functional can provide a more accurate prior
model on the curves than a simple curve length penalty. This is
a topic of our current research.

APPENDIX I
DERIVATION OF GRADIENT FLOW FOR THE MMS FUNCTIONAL

In Section IV-B, we discuss the steps taken to iteratively find
the numerical solution of the problem. In this Appendix, we pro-
vide details regarding how the solution can be computed in dis-
crete space. To do this, we must first write the MMS functional
in discrete form. The third term in (4) discretizes to

, where is a matrix approxima-
tion of the operator, is a matrix which represents the
function , and and are vectors representing the
discretized version of and , respectively. An equiva-
lent form of this term is .
Similarly, the fourth term in (4) involving can be written as

. We can think of the term
as an inverse covariance matrix ( );

so, the discretized version of MMS can be written, with
, as

(8)

where the variables are defined as in (3). The choice of
which minimizes (8) is

(9)

where is the identity matrix whose dimension is equal to the
number of observations in the region. The result for is sim-
ilar to (9) with replacing every instance of .

After solving for and updating for a given curve , the
next step is to evolve with fixed. We return to continuous
space and derive the first variation of with respect to
(the final result will be discretized for numerical implementa-
tion). The result provides us the direction of flow of for which

decreases most rapidly. Known as the gradient flow for
, it is often written as , or shorthand as , where rep-

resents iteration time during the curve evolution step.

First, we write the MMS functional from (4) as

(10)

where and are the regions separated by ,6

are the observations, is the subset of where observa-
tions of exist, and is defined as

(11)

with

(12)

where .
Note that since and are fixed in this step, does not de-
pend on . To find the curve evolution necessary to decrease

, we compute the partial derivative of with re-
spect to . Using the results derived by Kim et al. [87] and
Delfour and Zolesio [88], we obtain

(13)

and applying the result of Euclidean curve shortening
[ , where is curva-
ture] by Grayson [89], we obtain

6In the body of the paper, we have used a shorthand notation to write these
two terms as simply R and R . Throughout this Appendix, we will be more
explicit to make clear the dependencies of these regions on the curve.
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(14)

where represents the field estimate in and is an
indicator function that takes the value of 1 when observations
are present (i.e., when ), and 0 otherwise. The negative
signs arise from the fact that our outward normal is taken
with respect to .

Since , and are fixed, the integrand in (12) does not de-
pend on , but the region of integration does. In such a case,

can be written in the form of a line integral
[90]. In particular,

(15)

Here, represents the outward pointing normal vector with
respect to region .

Applying (15) to the two instances of in
(14), and assuming that is symmetric (i.e., ,
which implies ), we determine that

(16)

As a result, (14) simplifies to (17), shown at the bottom of the
page. Now, the choice of which yields the maximum de-

crease in is . So, our flow equation, written
in expanded form, is

(18)

For computational purposes, we desire a discrete version of (18).
By defining to be a matrix approximation of the operator,

a matrix approximation of (which we assume to
be symmetric), to be a diagonal matrix with the vector
elements of along the main diagonal, and and as the
vector representation of the discrete versions of and , re-
spectively, we obtain

(19)

where the index to a vector refers to the element in that vector
associated with the point on the curve, represents iteration
time during the evolution of the active contour, is the cur-
vature of at , is a diagonal matrix whose diagonal el-
ements are given by the elements of the vector inside the square
brackets, and is the outward unit normal with respect to .
The numerical evolution is performed using level set methods
[58], [59], and coordinate descent proceeds, alternating between
updates of and , until convergence.

(17)
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A. Verification of Mumford–Shah Gradient Flow

Now, let us consider the special case where is the iden-
tity matrix (in continuous space, this implies that is the
Dirac delta function). In this case, the curve flow can be simpli-
fied to

(20)

We can further specialize to the case (in addition to being
the identity) by taking and as the gradient op-
erator. By making these choices, we simplify to the case of
Mumford–Shah. In (14), we first observe that under these con-
ditions, is not a function of . So,
the integrands of the region integrals (which contain time deriva-
tives) are zero, reducing (14) to

(21)

The curve flow obtained from (21) in discrete form is

(22)

which is exactly the curve flow of Mumford–Shah as derived by
Tsai [69].

B. Convergence of Gradient Flow

In Section IV-B, we mention that coordinate descent does not
guarantee convergence to the global minimum. Consequently,
the results may be sensitive to the choice of initialization. If sev-
eral different initializations converge to different local minima,
the desired field and boundary estimate should be the pair
which results in the smallest functional value.
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