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Abstract

During data assimilation, differences between observations and their model coun-
terparts should be consistent with the error statistics that govern how the model is
to be corrected. The concept of incompatibility distance between observations and
their model counterparts is introduced as a way of detecting inconsistencies, and
formulae are presented for estimating the probability of encountering greater incom-
patibility. Observations can be examined one-by-one to insure that their confidence
intervals are not widely separated from those of the model counterparts. They can
be further examined in pairs to detect whether contrasts across fronts are consistent
with assumptions about error correlations.
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1 Introduction.

Modern methods for assimilating data into numerical models are based on sta-
tistical estimation theory. The statistical foundations are the same for optimal
interpolation (Gandin, 1963; Bretherton et al., 1976; Daley, 1991; Behringer
et al., 1998; Carton et al., 2000) as for Kalman filtering (Kalman, 1960; Gelb,
1974; Evensen, 1994; Cohn, 1997): data and model are both assumed to be
unbiased, and error variances and correlations dictate how differences between
observations and their model counterparts are transformed into corrections to
the model state. In practice, the model can have systematic errors!, the data
might characterize unmodelled processes ? , and the error covariances are often
parameterized as a simple function of distance. Consequently, model, data and

! For example, the model might tend to position the Gulf Stream front to far to
the north.

2 Data extracted from the archives might include measurements of slope water near
the continental coast, which is not represented by the model.
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errors might not be compatible. This is especially likely when the position of
a front as indicated by the observations differs from that in the model. The
purpose of this paper is to discuss how to screen for such incompatibilities. In
some cases, adjusting the error statistics might reconcile inconsistencies be-
tween data and their model counterparts. In other cases, it might be advisable
to discard some of the observations and assimilate the remainder.

Section 2 reviews the formalism for statistical data assimilation. Then section
3 addresses the the general case of compatibility of groups of data with their
model counterparts. Section 4 examines model-data-error compatibility for
the case of individual observations. The idea is that confidence intervals for
the observation and for its model counterpart should not be widely separated.
Then section 5 discusses pairwise compatibility. The confidence interval for a
single observation becomes a confidence ellipse for a pair; error ellipse of the
data should not be too far from that of their model counterparts. Section 6
summarizes with some concluding remarks.

2 Formalism for data assimilation.

From the perspective of optimal estimation theory, both the model state and
the observations are estimates subject to uncertainty. Errors in the model state
reflect uncertainties in the initial and boundary conditions and the approxi-
mate nature of the model dynamics. Those in the data reflect instrumental
accuracies and, more important, representativity error, i.e., the variety of pos-
sible measurements consistent with the model’s resolution. The objective is to
combine the two estimates to get a more accurate idea of the model state.
The improved estimate should be an average with the more trustworthy con-
tribution receiving the greatest weight. Furthermore, unobserved aspects of
the model state should be corrected to the extent their errors are correlated
with those of the observed aspects. Thus, knowledge of the magnitude and
correlation of errors for both the model state and the observations is essential.

The formalism assumes that both the uncorrected model state and the ob-
servations are unbiased estimates, i.e., mean errors are zero. While this is
not necessarily true in practice, it is incorporated into the prescription for
combining the data with the model state. Furthermore, the formalism bases
the corrections entirely on the variances and covariances of the errors, i.e.,
errors are implicitly assumed to be distributed multi-normally. This too is not
necessarily true in practice. Nevertheless, the formalism demands estimates
of appropriate error variances and covariances, which are generally difficult
to provide. Relatively simple parametric expressions are generally used for
optimal interpolation, while Kalman filtering attempts to do better by propa-
gating the errors from previous analyses along with the model state. The focus



here is on the fact that the error estimates can easily be wrong and the need
for a compatibility condition to help to identify when this might be the case.

The model state before assimilation is often referred to as the background
state, and assimilation is effected by adding corrections to this background.
The corrections, represented collectively by the vector A, are linear combina-
tions of the innovations, i.e., differences between observations and their model
counterparts, represented collectively by the vector §:

A = BHT(HBHT + D)~ '8 (1)

with coefficients determined by the error covariances matrix for the back-
ground state B and that for the data D. The matrix H maps the model state
into counterparts of the observations; HBH? is the error covariance matrix
for the model counterparts of the data, and BHT is the error covariance be-
tween all state variables and the observed aspects of the model state. Thus
the corrections clearly and directly reflect the characterization of errors via
the covariance matrices.

A well-known worry is that the matrix HBHT 4+ D might be ill-conditioned. If
it is, then small differences in the innovations can result in large differences in
the corrections, rendering the assimilation results sensitive to error in the data.
This can easily be the case when data errors are neglected, because correlations
between background errors make B ill-conditioned. The presence of the matrix
D should eliminate this worry®. But if observational errors are considerably
smaller than those of their model counterparts*, (HBH™ 4+-D)~* can still serve
to amplify short-range differences in innovations, such as might be encountered
when the model has incorrectly positioned a thermal front, and can lead to
unrealistic extrema in the corrected model state. It is not surprising that this
matrix should be central to the analysis of model-data-error compatibility.
It is intrinsic to the definition below of an index of collective compatibility
of the observations and their model counterparts. Sub-matrices appear when
examining model-data-error compatibility for individual observations or pairs
of observations.

3 Collective compatibility.

Incompatibility can be gauged by the distance between the vector d of n
observations and that of their model counterparts Hb. As these vectors are

3 Data errors are often considered to be uncorrelated, so adding the diagonal matrix
D makes B better conditioned.

4 HBHT + D need not be so ill-conditioned that round-off errors impede the com-
putation of its inverse.



subject to uncertainty, this should not not be the simple Cartesian distance;
instead, it should reflect the errors of the data and the model state. Because
observations and background are assumed to be unbiased estimates, the mean
errors of d and Hb should be zero, and their error-covariance matrices are
specified to be D and HBH™, respectively. If these error characterizations are
correct, the innovation vector 8 = d — Hb should have zero mean and error-
covariance matrix D + HBH™. Thus,

sn = ||d — Hb|| = \/(d — Hb)T(D + HBHT)~'(d — Hb) , 2)

the Mahalanobis length (Mardia et al., 1979) of the innovation vector & pro-

vides the natural definition of an incompatibility distance® .

If s, is too large, then model, data, and errors are incompatible. But how large
is too large? The probability ©

so (122 gypy /2
T exp
b / 92T (nf2) )

of encountering a less likely set of innovations can be determined from the chi-
square distribution function with n degrees of freedom (Stuart and Ord, 1987).
The values of s,, for which p, = 10% (solid curve) and p, = 5% (dotted curve)
are shown in figure 1 as a function of n; for large n, these cutoffs increase like

NG

While s, and p, may be useful for verifying the collective compatibility of
the data with their model counterparts, given the error covariances, if incom-
patibility is indicated, the cause might remain obscure. Examining the data
in smaller groups can help to isolate the problems. It is particularly useful
to examine the data one-by-one to determine the individual compatibility of
each observation with its model counterpart. After all data have been found
individually to be compatible with their model counterparts and assumed er-
rors, they can be examined pairwise to determine whether error correlations
present a problem.

5 The subscript indicates that s, is for n observations. Below, s; and so will re-
spectively denote the incompatibility distance for individual observations and pairs
of observations.

6 While p, could be used for testing the null hypothesis (Mood et al., 1974) that
model and data agree, following Cleveland (1993) the philosophy here is more ex-
ploratory than formal.
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Fig. 1. Ninetieth (solid curve) and ninety-fifth (dotted curve) percentile values for
sy as a function of n.

4 Compatibility for individual observations.

Model-data-error compatibility can be most easily illustrated when there is
only one observation. Suppose it has value d and its errors are characterized
by standard deviation og4; its counterpart in the background state has the
(scalar) value b = Hb with o} describing its error 7. If the magnitude of the
innovation |§| = |d—b| is much larger than 0,40}, then the error estimates are
not compatible with the simulated and observed values. The model might be
biased, causing b to differ greatly from what is observed. Or the observations
might wrong, e.g., latitude and longitude might have been switched and the
data used at the wrong location. Or the error estimates might be wrong; data,
model, or both might be less accurate than previously thought. Nevertheless,

7 The variances 03 and af are elements of the error-covariance matrices D and
HBHT for all of the data and their model counterparts, respectively.
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Fig. 2. Dots indicate values of data and model estimates, to be read from scale at
bottom; horizontal lines indicate standard-deviation ranges about data. Numbers
on the left side indicate incompatibility distances for the indicated errors; those on
the right, probabilities of finding greater model-data differences.

the machinery of data assimilation will produce a correction. Equation (1)
updates b to the weighted average (d/o3 + b/o?)/(1/03 + 1/0}). Moreover,
the variance of the error associated with this updated estimate is 1/(1/03 +
1/02), which is less than that of either contribution, in spite of the apparent
incompatibility.

If model and data are compatible, the square of the innovation should be
small compared to its error variance. The incompatibility distance s; between
a single observed value d 4+ o4 and its model counterpart b + oy is:

(d—b)?

51:||d_bH: 0_§+0_2'
b

(4)

If s; is large, then model, data, and errors are incompatible. Assuming the
background and data errors are normally distributed with zero means and
variances o7 and o2, then ¢ should be normally distributed with zero mean
and variance o, and s; with zero mean and unit variance. Thus, in terms of
the cumulative normal distribution function® ® (Mood et al., 1974),

p1=2(1 = ®(s1)) (5)

is the probability p; of encountering a model-data pair with incompatibility
distance larger than s;.

Examples of the incompatibility distance for a variety of cases are show in
figure 2. For all cases the data estimate is d = —1 and the background estimate

8 The same value for the p; is given by (3) with n = 1.
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Fig. 3. The 318 cells of the model’s 81 x 93 Mercator grid for which there are XBT
observations for January 1972. The domain extends from 97.7°W to 16.2°E with
1.4° zonal resolution and from 30.2°S to 69.9°N with resolution decreasing poleward

so that grid cells are approximately square everywhere. Horizontal and vertical axes
indicate zonal and meridional grid indices, respectively.

is b = +1. The horizontal lines indicate the intervals d £ o4 and b £ o,
which vary from case to case. The corresponding compatibility distances s; and
probabilities p; are displayed for each case. As the accuracies of the estimates
decrease, the validity intervals approach each other, so compatibility increases;
incompatibility distance decreases, and it is less unlikely to encounter a larger
innovation. Conversely, as the error variances decrease, the gap between the
validity intervals widens and the compatibility is less; the distance s; between
model and data is greater, and the chance of worse disagreement less likely. The
case with overlapping uncertainty intervals certainly agrees with the intuitive
notion of compatibility, while the bottom-most case with widely separated
intervals is clearly an example of model-data-error incompatibility.
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Fig. 4. Individual incompatibility distances s; for the 318 observations and their
model counterparts vs. standard deviation of observational errors. The vertical line
indicated the common value 2°C for the standard deviation of the model errors that
was used in computing s1. The horizontal line indicates the value s; = 2.58 for which
p1 = 0.01. Different plotting symbols are used to indicate when the absolute value
of the difference between observation and model counterpart fall into different 1°C
intervals which tend to increase with increasing s1: O, O, A, 4+, X, and ¢ indicate
innovations ranges increasing from 7-8°C to 12-13°C, respectively.

Before data are assimilated, they can be checked individually for compatibility
with their model counterparts. The cutoff for acceptable compatibility can be
adjusted to achieve the desired degree of screening. For example, you might
want the relatively conservative requirement of no gap between the uncertainty
intervals. For o4 = 0y, the no-gap criterion 0 < o4 + g, gives s; < V2 with
p1 > 0.157, but for o4 = 0, i.e., perfect observation, the no-gap criterion is
s1 < 1 with p; > 0.317. More lenient would be to consider the model, data, and
error estimates compatible when p; > 0.05, which corresponds to s; < 1.96;
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Fig. 5. Locations of 17 of the 318 cells of figure 3 where the probability of finding
greater incompatibility of XBT data, model counterparts, and error estimates is less
than 1%. The grouping by temperature differences is the same as for figure 4.

three cases in figure 2 satisfy this criterion. Still more lenient would be a cutoff
of s; < 2.58 corresponding to p; > 0.01.

Bathythermographic (XBT) data that are to be assimilated into a model of
the Atlantic Ocean (Halliwell, 2002a,b) provide a practical example. Figure 3
shows the grid cells where there are data during January 1972. The standard
deviations of the observational errors o, are taken to be the climatological
standard deviations of the temperature field (Levitus and Boyer, 1994) for
these locations. For brevity, attention is restricted to the model’s surface layer
and thus to averages of the temperature profiles from the surface to the depth
of 6 meters. The standard deviation of the errors of the simulated tempera-
tures o, is assumed to be 2°C everywhere, so that most data are considered
more accurate than their model counterparts (Thacker and Esenkov, 2002).



A scatter plot of s; vs. g4 is shown in Figure 4. Observational errors can be
seen to vary substantially. As magnitudes of innovations are indicated by the
different plotting symbols, it is clear that there are cases of relatively small
observational errors for large model-data differences. The cutoff value for s;
is a matter of judgment, and should be explored more thoroughly than is ap-
propriate here. For illustrative purposes, the cutoff is set so that p; = 0.01 as
indicated by the horizontal line; there are 17 cells with s; above this cutoff.
Their locations are indicated in figure 5. The cells with the largest values of s;
are situated within the envelope of the Gulf Stream Front. As this is a region
of high variability, it may be as appropriate to question the relatively low error
estimates as it is to question the large differences between model and data.
In this example the model had the front relatively far to the north while the
observations indicated its meander to the south.

5 Compatibility for pairs of observation.

Suppose that the vector dy represents a pair of observations with 2x2 error-
covariance matrix X; and that b, and X, are their model counterparts?:
then the error-covariance matrix for the innovation vector 8, = dy — b, is
35 = X4 + X. The Mahalanobis length of the innovation vector defines an
incompatibility distance sy between the pair of observations and their model
counterparts:

S% = 62T(2d + 2,,)‘162 . (6)

If the error assumptions are taken seriously, d, should be distributed bi-
normally, and the probability '° of a pair of innovations with larger s is
given by the integral of the bi-variate normal density over the annular region
0, 2585 > s2. Thus,

P2 = €xp (_52_3> (7)

is the probability of finding less pairwise compatibility.

To explore the role of correlated errors, it is instructive to consider the case of
equal and opposite innovations and positively correlated background errors !t .

9 The matrices X4 and 3 are sub-matrices of D and HBH™, respectively.

10 The same value for the p, is given by (3) with n = 2.

' When the separation of the two observations is comparable to the model’s resolu-
tion, the background error correlation should not vanish, because consistency with
the partial derivatives of the governing equations requires smooth fields and thus
correlated errors.

10
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Fig. 6. Four examples of pairs of observations and their model counterparts. Dots
indicate values of estimates, to be read from scales at bottom (first member)
and left (second member); in every case, individual model-data differences are +2
non-dimensional units. Ellipses and circles indicate confidence regions correspond-
ing to Mahalanobis distance of unity about model and data estimates, respectively.
Standard deviations of data and model errors, which are taken to be the same for
both variables, and the background error correlation coefficient are indicated to
the left; to the right, single-observation incompatibility distance and probability of
finding greater incompatibility, which are taken to be the same for both variables,
and pairwise incompatibility distance and probability of finding a less compatibility
pair of observations.

For further simplicity, suppose that the error variances for the two observations
have the same value o, and that their model counterparts both have error
variance 0. Further assume that the observational errors are uncorrelated
and that the background errors are correlated with coefficient r:

+1 10 17
52:5 Ed:O'ﬁ 2[,:0'? . (8)
-1 01 r1

11



For this case the expression (6) takes a relatively simple form:

) 20°
o5+ (1 —r)of

9)

When background errors are positively correlated (r > 0), s3 is greater than
the sum of the squares of the individual incompatibility distances. This should
be expected, because a positive correlation !? is inconsistent with the oppo-
site signs of the innovations. If background errors are uncorrelated (r = 0),
the individual no-gap criteria 6 = o4 + 0, with o4 = 03, for which (5) gives
p1 = 15.73% for less compatible individual innovations, (7) gives probability
po = exp(—2) = 0.135 for a less compatible pair; on the other hand, if back-
ground errors are completely correlated (r = 1), the individual no-gap criteria
gives the much smaller probability po = exp(—4) = 0.018 of finding a more
incompatible pair.

Figure 6 illustrates the dependence of the two-observation incompatibility dis-
tance on the nature of the background and data errors. Four examples are
shown, each corresponding to the non-dimensional innovation for one vari-
able being +2 and the other being -2. The data- and model-error standard
deviations and are taken to be the same for both variables; they range from
1/2 to v/2. The errors of the observations are assumed to be uncorrelated,
so their confidence regions are circular. The correlation coefficient r for the
background errors has value of 0.5 for two cases and 0.8 for the other two
cases. Projecting the ellipses and circles onto the horizontal axis generates in-
tervals such as those in figure 2 illustrating s; and p; for the first innovation;
projecting onto the vertical axis generates the same for the second innovation.
Because of the assumed equality of the innovations and that of their errors,
the single-observation incompatibility distances s; are the same for both inno-
vations, as are the probabilities p; of encountering less compatible individual
innovations. Three of the four examples satisfy the single-observation compat-
ibility criterion of s; < v/2 and the fourth satisfies the more lenient criterion
of p; > 0.05. However, only the lower-right example, for which p; > 31%,
would pass a two-observation compatibility criterion of p, > 15%. Reducing
the error estimates until p; = 15.7% (upper-right), causes the probability of
encountering a less compatible pair of innovations to drop to p, = 3.6%. If
the background correlation is reduced (lower-left), then p, increases to 6.9%.
The upper-left example illustrates how increasing the accuracy of the obser-
vation reduces the data-model-error compatibility; the probability of a less
compatible pair drops from 6.9% (lower-left) to 0.5%.

Figure 7 shows how incompatibility distance from (9) varies with the size of
the innovations, with the correlation of the background errors, and with the

12 A negative correlation would cause the same problem, if the two innovations had
the same sign and equal magnitude.

12
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Fig. 7. Contours of incompatibility distance so for the case of equal and opposite in-
novations. Panel labels indicate the ratio 02 /o2 of observational to background-error
variance, which range from 0.01 to 10. Horizontal axis indicates ratio §/oy of in-
novation magnitude to background-error standard deviation. Vertical axis indicates
correlation coefficient r of background errors for the two observations. For contours
s9 = 1,2,3, and 5, the corresponding values of py are 60.65%, 13.53%, 1.11%, and
0.0004%; values for the remaining contours are much smaller.

data-to-model ratio of error variance. The upper-right panel is the ideal case of
a model that is more accurate than the data; dependence on error correlations
is weak and incompatibility is largely a function of the size of the model-data
differences. When o4 = 0}, (upper-left), incompatibility increases rapidly with
the size of the innovations, but there is also a significant increase as background
errors become more highly correlated; for § = 203, ps < 5% when r > 0.66.
Although models may provide an excellent qualitative simulation of the ocean,
their quantitative performance is not as good, and data are generally more
accurate than their model counterparts'®. For 03 = 07/10 (lower-right) and

13 Model biases, such as the systematic misplacement of the Gulf Stream front, are
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0 = 20y, the probability of a more incompatible pair of innovations is only
pe = 2.6% if r = 0 and diminishes rapidly as r increases. For still more
accurate observations with o4 = 03,/10 (lower-left), only opposing pairs of
innovations that are very small are compatible with the errors; it is unlikely
to find individual innovations larger than twice the standard deviation of the
background error (p; < 4.7), so it is understandable that equal and opposite
pairs of innovations of this size give rise to such large incompatibility distances.

When errors are uncorrelated, the matrices ,; and ¥, are diagonal, and the
square of the pairwise incompatibility distance is simply the sum of the squares
of the two individual incompatibility distances. If s; is the same for both
innovations, so that p; is also the same for both, it does not follow that the
probability py of encountering another pair of innovations with larger s, is also
p1. For example, if p; = 0.01 for both innovations, then s? = 6.635 for both,
so s2 = 13.270 and p, = 0.0013. In other words, two unlikely innovations will
constitute an even less likely pair. In fact, a single unlikely innovation, when
combined with one that is more reasonable, will lead to an unlikely pair; e.g.,
52 = 6.635 (p; = 0.01) for the first innovation and s? = 2.575 (p, = 0.28) for
the second gives s2 = 9.21 (p, = 0.01) for the pair. Individual data-model-error
incompatibility induces pairwise incompatibility.

While pairwise probability ps is smaller than the individual probabilities p; for
the members of the pair, it is considerably larger than the product of the p;’s.
Suppose that the ellipses (circles) in figure 6 were enclosed by squares, the
length of each side being two standard deviations of the data or background
error. The product of the p;’s corresponds to the area outside these boxes,
which is smaller than that outside the ellipses.

It is useful to reconsider the example of figures 3, 4, and 5 in terms of pairwise
incompatibility. With the error variances as before, background errors are
assumed to be correlated with correlation coefficient that decreases with the
square of cell separation:

A2 + Aj?
T = exp (—%) . (10)

Figure 8 shows the pairwise incompatibility distance sy for all pairs of cells
in figure 3 excluding those in figure 5 plotted against the pair’s average
observational-error standard deviation. The data are displayed in different
panels according to the size of the correlation coefficient for the background
errors of the cell pairs. The upper-right panel corresponds to pairs of cells that
have a common side, the upper-left to those with a common corner, etc. The
lower-left panel includes pairs that are separated by two or more intervening
cells. It is interesting to note that the largest pairwise incompatibilities are

generally treated within the data-assimilation formalism as random errors.

14
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Fig. 9. Locations of the 11 cells that are members of the 19 pairs with so > 3.03 in
figure 8. The 4 indicated by A have s; > 2.25; at least one of these 4 appear in each
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found in the lower-left panel, so they cannot be attributed to background-
error correlations. Instead, they reflect the fact that both members of these
pairs exhibit relatively high individual data-model-error incompatibility. The
locations of these cells are shown in figure 9; except for the two off the west
coast of Africa, another region of high thermal variability, they are in the Gulf
Stream region near the cells shown in figure 5. The four having the highest
values of s; are members of all nineteen pairs with high ss. For these data it
appears that incompatibilities are more a consequence of error estimates being
small in comparison to the sizes of the innovations than to high correlations
across fronts.
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6 Conclusion.

The question of data-model-error incompatibility is closely related to the task
of identifying erroneous data, which has received considerable attention by me-
teorologists. The paper by Lorenc and Hammon (1988) addresses that problem
within the framework of Bayesian statistics, while a more recent work (Dee
et al., 2001) bears much similarity to what has been presented here, but treats
differences of innovations rather than the innovations per se. By assuming
model state and error estimates to be relatively problem-free, all incompat-
ibilities can be attributed to the data. Unfortunately, oceanographic models
exhibit substantial bias. For example, the Gulf Stream Front can be shifted
substantially from its true position, and the correspondence between actual
and simulated mesoscale eddies can be quite poor. Moreover, knowledge of
errors of both observations and simulations are poorly known; as mentioned
above, even estimates of climatological variability can be subject to question.
Thus, it is useful to approach the question of data-model-error incompatibility
without prejudice as to the cause. The concept of an incompatibility distance,
together with an estimate of the probability of encountering less compatibility,
not only offers a way to screen data before they are assimilated into numerical
models, but also offers a means for identifying systematic modelling problems
that should be addressed and, as the real-data example here demonstrates, and
for drawing attention to details of the error models that might be improved.
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