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In a hydrostatic fluid (0¢/0s = —adp/ds), the layer mass-weighted horizontal pressure
gradient force (PGF) satisfies

Op

0 0
a_i) [@Vsp + V] = Vs ($Qp> + s (PVso) . (1)

The 3-dimensional gradient form shown on the right indicates that net accelerations of a fluid
system can only be caused by boundary forces. This has well-known implications for vortex

spinup/spindown: Given that the curl of the r.h.s. of (1) reduces to

0
s (Vs x pVso),

we can state that interface pressure torques governing vortex spinup/spindown in individual s

coordinate layers have the form (Vs x pV¢).

It is important to preserve the above aspects when numerically solving the fluid dynamics
equations. The task before us, therefore, is to find a finite-difference expression for the PGF term
[@Vsp + Vsé] in the horizontal momentum equation that can, after multiplication by the layer

thickness, be transformed by finite difference operations into an analog of the right-hand side of
(1).

We start by writing the x component of the last term in (1) in the simplest possible, and thus
plausibe, form d5(p*d;¢). Finite-difference product differentiation rules allow this to be expanded

as follows:
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A finite-difference equation analogous to (1) is now obtained by rearranging terms and adding an



analogous expression for the y component:
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The two equations above state that, in order to preserve the conservation properties expressed by

(1), the finite-difference PGF must be evaluated in the form
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The salient result of our analysis is that writing the undifferentiated factor o in the PGF formula
as simply & or @¥ can lead to spurious momentum and vorticity generation. To avoid this pitfall,

a must appear in the PGF formula in layer thickness-weighted form.

For use in isopycnal or quasi-isopycnals models, it is convenient to express the PGF in terms
of the Montgomery potential M = ¢ + pa. The proper finite-difference analog of M in a staggered

vertical grid (p and ¢ carried on layer interfaces, o carried within a layer) is
M =¢’ + ap’.
The identity d5(ap®) = adsp’ + pdsa allows us to expand the s derivative of M into
8sM = pbya + 6,0+ adsp .

from which we can extract finite-difference analogs of the two common forms of the hydrostatic

equation, 0¢/0p = —a and OM /Oa = p:
0¢/0p = —a — dsp = —adsp
OM/0a =p — 0s M = pbsa.

We now write the z component of (2) as
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where ¢}, represents the difference between two neighboring grid points, i.e., §, = Az §,, the term

in square brackets in (3) can be expanded into

1 1

— (a0p” —@0p") 0P° — P "0sa = = (0,6,p) (0,0)0,P° — P*"0ycx
dsp 4dsp
1
= O [005p) (0;P°) — 45°"35P" ] dgcr.
S

The above expression involves a total of four p points, located one grid distance Ax apart
on two consecutive s surfaces. Substantial simplification of this expression is possible by labeling

the four points as

Az As Az As
P1=P($—7a3—7) p2=p<$+7a3—7)

Az As Az As
p3=p(x—7,5+7) P4=P<$+7a8+7>-

With a modest amount of arithmetic, it can now be shown that the term in square brackets in (3)

reduces to
P1p2 — P3p4
(pa—p2) + (3 —p1) °

This term, which in combination with the term d, M gives the PGF in x direction, is the sought-after

finite-difference analog of —pda/dz in
aVp+ Vgp =V M — pV;a.

The finite difference expression for the PGF in y direction is analogous.



