John Harding Naval Oceanographic Office

Harley Hurlburt Naval Research Laboratory

8th Hybrid Coordinate Ocean Model Workshop August 19-21, 2003

HYCOM & Navy Ocean Prediction Role of Ocean Modeling

Important (Not Sole) Tool for the Operational Oceanographer Providing Oceanographic Environmental Intelligence Relevant to the Warfighter

Computing Resources – Critical Role of the NAVO MSRC (Global Example)

While much of the ocean's mesoscale variability can be forecast, routine global forecasts (at 1/32 degree resolution) remain a Grand Challenge computational goal potentially achievable in 2009 with current level of expenditure.

Nesting Strategy for Ocean Prediction

Global \rightarrow	Regional	\rightarrow	Littoral	\rightarrow	Nearshore

Near-Term: present-FY04 in <u>R&D</u>, FY03-FY06 operational, including transition

1/8° NCOM	\rightarrow	SWAFS & NCOM	\rightarrow	SWAFS & NCOM	\rightarrow	**RMA2/ADCIRC
15-16 km mid-	\rightarrow	4 - 8 km, larger	\rightarrow	< 1 to 2 km res	\rightarrow	< 2 km resolution
lat resolution		regions				finite element

Mid-Term: FY04 - FY07 in <u>R&D</u>, FY06 – FY10 <u>operational</u>, including transition

1/12° HYCOM	\rightarrow	*SWAFS/NCOM/ HYCOM	\rightarrow	*SWAFS/NCOM / HYCOM	\rightarrow	**ADCIRC
7 km mid-lat resolution	\rightarrow	2 - 4 km, smaller regions	\rightarrow	.5-1.5 km res	\rightarrow	< 1.5 km res

Long-Term: FY07-FY10 in <u>R&D</u>, FY10 and beyond <u>operational</u>, including transition

⁺ 1/25°	\rightarrow	Regional generally	\rightarrow	*NCOM/HYCOM	\rightarrow	**ADCIRC
HYCOM		not needed				
3 - 4 km mid-	\rightarrow	Not used	\rightarrow	≤ 1km res	\rightarrow	≤1 km res
lat resolution						

*Hogan and Kindle CO-NESTS project should provide research results needed to make the appropriate choice. An alternative model such as ROMS may also be considered. +1/25° HYCOM gives useful littoral resolution globally.

**Nearshore models need a robust baroclinic capability before they can fully fill this role.

HYCOM & Navy Ocean Prediction Planned Operational Transitions

Global Product	Vert. Coord.	<u>Inputs</u>	Run By	<u>Target Date</u> (Operations)
1/8° NCOM ¹	σ/z	SSH, SST,	NAVO	2003
1/32° NLOM	Layered	hydro, FNMOC	NAVO	2003
		atmospheric		
1/12° HYCOM ²	ρ/σ/z	forcing	NAVO	2007
1/25° HYCOM	ρ/σ/z		NAVO	2010

¹ High vertical resolution for mixed layer prediction. Assimilates SSH from NLOM. Running in real-time, see http://www.ocean.nrlssc.navy.mil/global_ncom

² 1/12° Atlantic and coarser global HYCOM are GODAE-related pilot projects under the National Ocean Partnership Program (NOPP). 1/12° Atlantic HYCOM demo is running in near real-time. Results at:

http://hycom.rsmas.miami.edu/ocean_prediction.html

A Validation Baseline for Operational Ocean Prediction – NCOM G8

Model experiments to be tested

- Free running 1998-2001
- Assimilative 1998-2003
- Bimonthly 7-day forecasts 1998-2002

Validation Tests (vs. Unassimilated Data)

- Sea Surface Height (analysis vs. sea level data)
- Sea Surface Temperature (analysis/forecast vs. MCSSTs & buoys)
- Mixed Layer Depth (analysis vs. profile data)
- Large-scale, meso-scale circulation features (mean, analysis position)
- Eddy kinetic energy/SSH variability (means)
- Current cross sections (events, means)
- Comparison with drifting buoys (June, 2000 Nov., 2000)
- 3D profiles and vertical cross sections (analysis vs. profile data)
- Transport through straits (total, means)
- Regional evaluations by collaborators

Persian Gulf SSH Validation of NCOM G8 relative to Buoy

A U.S. Navy buoy deployed in late January 2003 measured sea level in northwestern Persian Gulf until damaged in mid-March. Comparisons of the detided buoy observations with the independent NCOM G8 model results referenced to the same mean demonstrates the accuracy of the model

HYCOM & Navy Ocean Prediction NCOM 48 hr. SST Forecast Verification – (Relevant to Coupled Air/Ocean)

2 Day SST Forecast Verification Statistics Mean RMS (⁰C) over 40 forecasts made 4 Jan 2001 – 12 Feb 2001

Summary of Planned Long-Term Operational Capability

- .08° fully global ocean prediction system transitioned to NAVO in 2006 (Expected Operational 2007)
 - ♦ ~7 km mid-latitude resolution
 - Include shallow water, minimum depth 10 m (or less)
 - Bi-polar (PanAm) grid for Arctic
 - ◆ FY05-07 DoD HPC Challenge project essential
 - Embedded ice model
 - Account for Tides (internal or external to HYCOM)
 - General Nesting Capability (Regional SWAFS/NCOM/HYCOM)
- Increase to .04° resolution globally and transition to NAVO by the end of the decade
 - ◆ ~3.5 km mid-latitude resolution
 - Good resolution for coastal model boundary conditions globally
 - "Baseline" resolution for shelf regions globally

