# Results from High Resolution North Atlantic HYCOM Simulations

Patrick Hogan, Alan Wallcraft, Harley Hurlburt, Tammy Townsend Naval Research Laboratory Stennis Space Center, MS

> Eric Chassignet RSMAS, University of Miami Miami, FL

# 1/12° North Atlantic HYCOM

 $28^\circ S$  to  $70^\circ N$ 

First simulation restarted from true MICOM (20 layers) 5 "light" layers added for increased vertical resolution in ML

First simulation designed to be as similar as possible to MICOM run

- 50% relax to COADS SSS, 50% E-P
- ECMWF 10 m monthly climatological forcing
- Relaxation to Levitus at north and south boundaries
- Laplacian scalar diffusion
- Smagorinsky Laplacian momentum diffusion
- Radiation flux correction (-25 w/m<sup>2</sup>)
- Energy loan ice model
- River runoff included

# 1/12° North Atlantic Simulations

2.4 years monthly climatological ECMWF

3 years: 6-hourly high frequency monthly climatological (Oct. 1994-Sept. 1995 6-hourly added to climatology)

3 years: 6-hourly hybrid NOGAPS /ECMWF July 1999 - July 2002

(6-hourly NOGAPS wind stress over 1999-2002 replaces the ECMWF reanalysis variability; ECMWF mean retained)

3 years with strong relaxation at southern boundary

3 years with weak relaxation at southern boundary

3 years with weak relaxation at southern and northern boundary

### 10 x 16 Equal Ocean Decomposition



- > Running on Brainerd (ARL)
- > 58,000 CPU hrs/model year on 160 CPUs
- > 770 GB/model year for daily 3-D output
- > MPI parallelization

# **High-resolution 1/12° North Atlantic HYCOM simulation**



**SSH** snapshot

# 1/12° HYCOM ATLANTIC SIMULATION ~7 km resolution at mid-latitudes



Forced by ECMWF 10 m reanalysis monthly climatological wind and thermal fluxes, climatological surface salinity and relaxation to MODAS climatology at the northern and southern boundaries (themohaline component)



Forced by monthly climatological ECMWF 10 m winds and fluxes and relaxation to Levitus climatology at the zonal boundaries



**RED = Model too warm BLUE = Model too cool** 

#### Monthly means of MLD and BLD along equator from 1/12° North Atlantic

#### Mixed layer depth

### **Boundary layer depth**



Diagnostic – equivilent density change that corresponds to 0.2° temperature change

Prognostic

# **18 degree Mode Water formation**



# **18 degree Mode Water formation**



#### Mean ML depth from 1/12° North Atlantic HYCOM



# 1/12° North Atlantic HYCOM

#### Forced with ECMWF 10m climatology



Includes relaxation to Levitus at the north/south boundary



### **Denmark Straits Overflow**





temperature

#### Evolution of Loop Current Eddy Shedding from 1/12° North Atlantic HYCOM



### **Yucatan Channel Normal Velocity**



### North Atlantic HYCOM Abyssal Volume Transport

1/12°

|      |         |         | -     |           |       |        |       |       |          |
|------|---------|---------|-------|-----------|-------|--------|-------|-------|----------|
|      | Clim    | Clim    | Ir    | iterannua |       | Micom- | clim  | clim+ | Interann |
|      | Year 12 | Year 13 | 1996  | 1997      | 1998  | mode   |       | 6hrly | 2000     |
|      |         |         |       |           |       |        | -     |       |          |
| 47°N | 14.89   | 15.01   | 20.39 | 22.49     | 17.78 | 18.40  | 20.72 | 25.15 | 27.43    |
| 34°N | 17.04   | 17.02   | 18.50 | 17.52     | 20.30 | 21.10  | 24.07 | 26.62 | 28.29    |
| 27°N | 18.03   | 17.20   | 18.83 | 17.14     | 16.47 | 22.26  | 24.10 | 29.54 | 26.30    |
| 9°N  | 16.34   | 15.63   | 18.09 | 15.76     | 18.02 | 23.25  | 24.84 | 26.22 | 23.46    |
| EQ   | 16.52   | 16.35   | 21.44 | 16.67     | 16.16 | 22.99  | 27.58 | 31.44 | 26.21    |
| 9°S  | 16.70   | 16.33   | 17.98 | 15.16     | 14.87 | 21.98  | 28.75 | 31.46 | 27.98    |

 $1/3^{\circ}$ 

### **Barotropic Volume Transport**

| Miami   | 21.14 | 21.36 | 21.69 | 22.07 | 22.31 | 22.72 | 25.67 | 29.28 |
|---------|-------|-------|-------|-------|-------|-------|-------|-------|
| STACS   | 23.66 | 25.23 | 25.85 | 25.54 | 25.38 | 24.40 | 27.12 | 30.44 |
| Yucatan | 21.54 | 21.63 | 21.64 | 22.27 | 22.57 | 23.16 | 26.17 | 30.40 |

# Abyssal Volume Transport from 1/12° North Atlantic HYCOM

|      | <b>strong</b><br>1/3 timescale S.B. | <b>benchmark</b><br>15-30 days | <b>weak</b><br>3x timescale S.B. | <b>weak</b> *<br>3x south/north |
|------|-------------------------------------|--------------------------------|----------------------------------|---------------------------------|
| 47°N | 26.67                               | 26.30                          | 27.49                            | 27.01                           |
| 34°N | 29.69                               | 28.93                          | 27.54                            | 28.78                           |
| 27°N | 32.03                               | 30.74                          | 29.38                            | 29.78                           |
| 9°N  | 28.76                               | 26.10                          | 25.30                            | 25.58                           |
| EQ   | 31.46                               | 31.88                          | 25.71                            | 26.35                           |
| 9S   | 32.58                               | 29.67                          | 25.79                            | 25.88                           |
| 20S  | 32.93                               | 31.12                          | 25.68                            | 25.69                           |

# **Barotropic Volume Transport**

| STACS 29.77 28.13 29.60 29.32 |
|-------------------------------|
|-------------------------------|

\* one-year mean transports (all others two-year means)

### **Changes to latest 1/12° North Atlantic simulation**

- Sigma-2 with thermobaricity
- 5 m coastline, 10 m minimum depth
- GDEM3 boundary relaxation and initialization
- Monthly river input
- kPAR based turbidity based on SeaWIFS
- Weaker relaxation to climatology at southern boundary
- Staggered sigma levels





### 20 m coastline

### 5 m coastline (10 m minimum depth

(sorry - different colorbar)

### Sigma-2 GDEM3 Monthly Climatology

#### Interpolated to 26 layer 1/3° North Atlantic Domain



GDEM3: 78 levels, 1/4° horizontal resolution (M. Carnes, NAVOCEANO)





# **Future Plans**



(Hogan, Kindle, Wallcraft)

#### Slope to Shelf Energetics And Exchange Dynamics

(Jacobs, Teague, Hogan, Arnone)

Measuring and modeling of processes that affect crossslope exchanges in the GoM



•Develop HYCOM coastal capabilities

- •Evaluate coastal HYCOM and NCOM
- •Evaluate coupling and boundary conditions



Mississippi Bight Domain



### **26-layer HYCOM**

#### temperature merid.sec. 87.68w date: nov 30, 2002 [03.2H] . .... ....

salinity merid.sec. 87.68w date: nov 30, 2002 [03.2H]



### **Remapped to 40 levels**



### HYCOM $\sigma$ -z configuration

Hybrid coordinates



SSH after 7 days both taking boundary conditions from  $1/12^{\circ}$  basin scale North Atlantic model remapped to 40  $\sigma$ -z levels

Both enclosing model and nested models have 1/12° resolution



Next: Hybrid coordinates in the nested domain Higher resolution (vertical and horizontal) in the nested domain Assess accuracy of coastal circulation processes