1/12° North Atlantic HYCOM Development

T. Townsend1, A. Wallcraft1, W. Schmitz, Jr.2, Z. Garraffo3, H. Hurlburt1, E. Chassignet3, and P. Hogan1

1 Naval Research Laboratory, Stennis Space Center, MS
2 Woods Hole Oceanographic Institute, Woods Hole, MA
3 RSMAS, University of Miami, FL

HYCOM NOPP GODAE Meeting
RSMAS, University of Miami, FL
6-9 December 2005
Motivation: Improved Model Component in 1/12° Atlantic-HYCOM Nowcast/Forecast System

Present Day Near Real Time Data-assimilative Run
(http://www7320.nrlssc.navy.mil)

Climatological Spin-Up To Real Time System

Two-Year Mean SSH
Atlantic Basin-Scale Model Evaluation Methodology: First Order Requirements

Mean and Variability of large-scale currents

Realism of wind-driven flow

Meridional Overturning Cell (thermohaline driven)
 Amplitude
 Characteristics of deep southward and upper return flow

Transports
 Through passages
 Within major currents

Water mass distribution
1/12° ATL-HYCOM Development

Boundary relaxation time scale
 Impact on MOC amplitude
Advection scheme (MPDATA vs FCT2)
 Impact on subpolar gyre mixed layer depth
 Impact on MOC amplitude
Vertical coordinate:
 σ_0 w/ and w/o variable target ρ
 Impact Mediterranean circulation
 σ_2^*
 Impact on Mediterranean salinity outflow
 Impact on AABW
Bottom topography (sills)
 Impact on flow pathways
Diffusion parameterization
 Impact on major currents (strength and pathway) and energy levels
Wind Forcing
 Impact on large-scale current systems
Turbulent mixing scheme
 Impact on diffusion
1/12° ATL-HYCOM Development

Boundary relaxation time scale
 Impact on MOC amplitude
Advection scheme (MPDATA vs FCT2)
 Impact on subpolar gyre mixed layer depth
 Impact on MOC amplitude
Vertical coordinate:
 σ_0 w/ and w/o variable target ρ
 Impact Mediterranean circulation
 σ_{2}^*
 Impact on Mediterranean salinity outflow
 Impact on AABW
Bottom topography (sills)
 Impact on flow pathways
Diffusion parameterization
 Impact on major currents (strength and pathway) and energy levels
Wind Forcing
 Impact on large-scale current systems
Turbulent mixing scheme
 Impact on diffusion
1/12° ATL-HYCOM Development

Boundary relaxation time scale
 Impact on MOC amplitude
Advection scheme (MPDATA vs FCT2)
 Impact on subpolar gyre mixed layer depth
 Impact on MOC amplitude
Vertical coordinate:
 σ_0 w/ and w/o variable target ρ
 Impact Mediterranean circulation
 σ_2^*
 Impact on Mediterranean salinity outflow
 Impact on AABW
Bottom topography (sills)
 Impact on flow pathways
Diffusion parameterization
 Impact on major currents (strength and pathway) and energy levels
Wind Forcing
 Impact on large-scale current systems
Turbulent mixing scheme
 Impact on diffusion
1/12° Atlantic HYCOM Configuration

28°S to 70°N; 1/12° (7 km mid-lat); 26 or 28 layers; \(\sigma_0 \) or \(\sigma_2^* \)

Topography from NRL-DBDB2
 Hand edited after interpolation to model grid

Monthly GDEM3 climatology
 Initialization (July); SSS and lateral open boundary relaxation

KPP or GISS turbulent mixing model

ERA-15 monthly mean forcing + high-frequency wind anomalies
 Corrected strength of winds

River runoff included
 Major rivers only at this time

kpar turbidity

Bulk formulation for sensible and latent heat fluxes

Energy loan ice model
1/12° ATL-HYCOM Twin Experiments

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Smag. Diffusion</th>
<th>Spatially Constant A</th>
<th>Mixed Layer</th>
<th>Model Years</th>
<th>C<sub>b</sub></th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATLd0.08-11.8</td>
<td>.05</td>
<td>20</td>
<td>KPP</td>
<td>09-10</td>
<td>.02</td>
<td>Improved WWI sills</td>
</tr>
<tr>
<td>ATLd0.08-12.0</td>
<td>.05</td>
<td>25</td>
<td>KPP</td>
<td>11-13</td>
<td>.022</td>
<td>Improved FS sill</td>
</tr>
<tr>
<td>ATLd0.08-12.1</td>
<td>.1</td>
<td>30</td>
<td>KPP</td>
<td>11-15</td>
<td>.022</td>
<td></td>
</tr>
<tr>
<td>ATLd0.08-12.2</td>
<td>.05</td>
<td>30</td>
<td>KPP</td>
<td>11-13</td>
<td>.022</td>
<td></td>
</tr>
<tr>
<td>ATLd0.08-12.3</td>
<td>.1</td>
<td>30</td>
<td>KPP</td>
<td>11-13</td>
<td>.022</td>
<td>1.2x winds</td>
</tr>
<tr>
<td>ATLd0.08-12.4</td>
<td>.1</td>
<td>30</td>
<td>GISS</td>
<td>11-13</td>
<td>.022</td>
<td></td>
</tr>
</tbody>
</table>
Yucatan Channel Annual Mean Velocity
1/12° Atlantic HYCOM

- m/s
- σ₀
- MPDATA
- σ₂
- FCT2
- A=20
- S=.05
- A=25
- S=.05
- A=30
- S=0.1
- 12.1 + 1.2x winds
- 12.1 + GISS
1/12° Atlantic HYCOM 2-Year Mean SSH

- 12.1
- A=30, S=0.1
- + 1.2x winds

- 12.2
- 12.1
- + S=.05

- 12.3
- 12.1
- + GISS
1/12° Atlantic HYCOM
Layer 1 EKE (cm²/s²)
1/12° Atlantic Hycom
Two-year Mean Transports*

<table>
<thead>
<tr>
<th>Expt.</th>
<th>FC 27°N</th>
<th>Abac (nrth)</th>
<th>FC + Abac</th>
<th>NWP</th>
<th>OBC</th>
<th>Yuc Chan</th>
<th>WW</th>
<th>Mona</th>
<th>Aneg</th>
<th>L.A.#</th>
<th>Lucia Vinc e Gren</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obs</td>
<td>32</td>
<td>5</td>
<td>37</td>
<td>-1.2</td>
<td>-1.9</td>
<td>29.2</td>
<td>-7.0</td>
<td>-2.6</td>
<td>-2.5</td>
<td>-17.1</td>
<td>-10.1</td>
</tr>
<tr>
<td>11.8</td>
<td>27.9</td>
<td>20.8</td>
<td>48.7</td>
<td>-3.3</td>
<td>1.1</td>
<td>25.7</td>
<td>-3.3</td>
<td>-3.8</td>
<td>-1.7</td>
<td>-16.9</td>
<td>-11.4</td>
</tr>
<tr>
<td>12.0</td>
<td>27.7</td>
<td>16.6</td>
<td>44.3</td>
<td>-2.7</td>
<td>1.1</td>
<td>25.8</td>
<td>-3.2</td>
<td>-5.7</td>
<td>-1.7</td>
<td>-15.5</td>
<td>-9.9</td>
</tr>
<tr>
<td>12.1</td>
<td>26.8</td>
<td>6.8</td>
<td>33.6</td>
<td>-3.2</td>
<td>1.0</td>
<td>24.5</td>
<td>-3.3</td>
<td>-3.9</td>
<td>-1.3</td>
<td>-16.2</td>
<td>-10.2</td>
</tr>
<tr>
<td>12.2</td>
<td>27.4</td>
<td>7.4</td>
<td>34.8</td>
<td>-3.6</td>
<td>0.9</td>
<td>24.7</td>
<td>-4.8</td>
<td>-3.5</td>
<td>-1.3</td>
<td>-15.2</td>
<td>-9.4</td>
</tr>
<tr>
<td>12.3</td>
<td>28.3</td>
<td>4.7</td>
<td>33.0</td>
<td>-4.0</td>
<td>1.0</td>
<td>25.3</td>
<td>-1.9</td>
<td>-4.9</td>
<td>-2.3</td>
<td>-16.1</td>
<td>-10.3</td>
</tr>
<tr>
<td>12.4</td>
<td>25.9</td>
<td>5.4</td>
<td>31.3</td>
<td>-3.1</td>
<td>0.9</td>
<td>23.7</td>
<td>-2.5</td>
<td>-3.9</td>
<td>-1.2</td>
<td>-16.2</td>
<td>-11.1</td>
</tr>
</tbody>
</table>

* Positive transport defined northward and eastward
*# Residual of Yucatan – WW – Mona - Anegada
1/12° ATL-HYCOM Mean Sea Surface Height

Present Nowcast/Forecast System Model

Improved Model

ERA-15 wind (+ high-frequency anomalies) and thermal forcing and relaxation to GDEM3 at northern and southern boundaries
1/12° ATL-HYCOM Development

Boundary relaxation time scale
 Impact on MOC amplitude
Advection scheme (MPDATA vs FCT2)
 Impact on subpolar gyre mixed layer depth
 Impact on MOC amplitude
Vertical coordinate:
 σ_0 w/ and w/o variable target ρ
 Impact Mediterranean circulation
 σ_2^*
 Impact on Mediterranean salinity outflow
 Impact on AABW
Bottom topography (sills)
 Impact on flow pathways
Diffusion parameterization
 Impact on major currents (strength and pathway) and energy levels
Wind Forcing
 Impact on large-scale current systems
Turbulent mixing scheme
 Impact on diffusion
Variable Reference State