

Sensitivity to Vertical Resolution

Chandrasekher Narayanan

Avichal Mehra

Carlos Lozano

Nov 08, 2006

HYCOM MEETING 2006

Motivation

 Evaluate the effect of vertical resolution on the oceanic circulations to determine the optimal number of vertical layers in hybrid coordinates.

Methodology

- Five different runs with different vertical hybrid layer parameters
- H25: same parameters as NCEP operational model
- H26: 26 Hybrid levels and targets
- H28: Navy version
- H75: 75 Hybrid levels and targets
- H100: 100 Hybrid levels and targets

H26 hybrid coordinate selection criteria

- Resolve three vertical normal modes in 11 different regions: Caribbean, Labrador, Subtropical North Atlantic, Subtropical South Atlantic, Tropics, Gulf of Mexico, Gulf Stream, GIN sea, Gulf of Maine and Gulf of Saint Lawrence
- Resolve significant Atlantic water masses
- Capture the overflows in Denmark Strait, Iceland Faroe and Mediterranean.
- Shallow water: sigma coordinates up to 150 m depth. Five targets lighter than lightest water in the domain. Target the shelfbreak front in MAB.

H75, H100

- Targets selected by choosing 6 vertical dynamical modes to capture the variability of the ocean. Combined all the targets and used the criteria: min difference between targets is 0.016 (for 100 layers), 0.0241(for 75 layers)
- Verified that the Denmark Strait, Iceland Faroe and Mediterranean Overflows are well resolved.
- Verified that the significant Atlantic water masses are well resolved.

Model Configuration

- 1/3 $^{\circ}$ horizontal resolution (421 x 300), curvilinear coordinates
- Varied vertical resolution (25,26,28,75 and 100 hybrid levels)
- 6 hourly GFS forcing (momentum, thermal)
- Climatological hydrography (for initialization)
- Climatological rivers
- Open boundary conditions with buffer zones (one invariant formulation)
- Surface Montgomery Potential Algorithm
- Start date: 08/01/04
- Horizontal diffusivity/viscosity: visco2 = 0.1, visco4 = 0;

veldf2 = 0.0075, veldf4 = 0.01

• No tides or atmospheric pressure forcing

»

No data assimilation

Analysis

- Kinetic Energy
- Mean and Variance of Salinity and Density
- Deep TS characteristics
- Mixed Layer depth
- Coastal Ocean shelf break front characteristics
- Circulation Patterns
- Transports

Kinetic Energy

Gulf Stream

Caribbean

Statistics

Mean and standard deviation of density

After 540 days

Sub Polar and Nordic Seas

Gulf of Mexico

Equator

Subtropical Gyre mean density and differences from initial conditions

Subtropical Gyre Standard deviation

Transports

Circulation pattern after 540 days

Mixed Layer Depth

Conclusions

- The simulations are very sensitive to the hybrid coordinate parameters.
- The circulation patterns in the simulations are very different
- The deep water masses are very different in the 25, 26 and 28 simulations from the 75 and 100 simulations that are similar.
- The kinetic energy and the mean and standard deviations suggest that the 75 and 100 levels results are similar.
- 26 is in closer agreement with 75,100 than 25

Implications and Future Work

- We use the 26 layer for future operational implementation
- Obtain the optimal number of layers
- What is the implication for climate scale work ?
- Run the same using 1/12 resolution