Towards the implementation of the SEEK filter with the Hycom model

L. Parent, HYCOM consortium Naval Research Laboratory (USA), Legi (France)

> HYCOM Meeting October 27-29th 2004

Last Fiscal Year

- use the low resolution of the North Atlantic configuration: $1/3^{\circ}$, sigma0
- large processing regarding the Mean SSH, thanks to O.M. Smedstad: how to combine different Mean SSH products ?
- the Mediteranean Sea: it is an issue for the HYCOM model and the assimilation of altimetry. It was partly fixed → take care about the merge of Atlantic Mean SSH + Mediteranean Mean SSH

Since Summer

- start to work with the high resolution configuration: $1/12^{\circ}$, sigma2*
- it's not only a more expensive configuration, it also needs to change some parameters of the assimilation system

The $1/12^{\circ}$ North Atlantic configuration, a brief description (see T. Townsend's talk)

- source code: src_2.1.27_sig2a_28_mpi
 experiment number: 11.2
- use the FCT advection scheme, KPP
- no bottom boundary layer (BBL)
- northern and southern boundaries:
 33-120 day e-folding time (GDEM3 climatology)
- forcing fields: use ECMWF mean + FNMOC
- no SST relaxation
- SSS GDEM3 relaxation
- interannual run: July 1998 \rightarrow September 2004
- thermobaricity effect on SSH (sigma2*): don't forget this !!

The assimilated data: SSH, SST, SSS

• AVHRR SST: ~9km resolution (from JPL)

- clouds \rightarrow large area without data during winter
- suggestion: to add an other product (MODAS)
- **GDEM3 SSS** climatology (monthly)
- **SLA**: Topex, ERS2, GFO, Jason1, Envisat when available
- Mean SSH: based onto Niiler's Mean SSH
 - + processing

- Mediteranean Sea: add the HYCOM Mean SSH (sigma0 run)

- North Sea: from the Nowcast/Forecast System
- spatial interpolation onto the HYCOM grid

. . .

• Mask SLA data:

- problem with the SLA signal near coasts
- problem with the tidal model onto shelves
- bad Niiler's Mean SSH \rightarrow mask

- no assimilation near Gibraltar Strait
- if $abs(SLA) \ge 1.5$ meter: data is removed

The Rms misfit of the free run

7

the first analysis stage: July, 8th 1998

- assimilation frequency: 7 days
- estimation of the error covariance matrix: Eof analysis , 14 days frequency, July 1998 → July 2001
- local analysis: same as $1/3^{\circ}$ size of the influence data bubble is 4°

there is a reduction of the Rms misfit: $14\text{cm} \rightarrow 10\text{cm}$ (Topex SLA) $1.5^{\circ}\text{C} \rightarrow 0.8^{\circ}\text{C}$ (AVHRR SST)

but the analysis SSH, SST or SSS is too noisy

the first SSH analysis stage: xf-xa

Eof 10 - SSH variable

It means that you need to change some parameters of the assimilation system. Which one ?

Note that the assimilation scheme has to correct the bias (large scale) + eddies (small scale)

example of parameters:

- the number of Eofs
- the size of the influence data bubble: $4^\circ \to$?
- smooth snapshots before the estimation of the error covariance matrix
- to split the analysis stage in 2 parts: large / small scale

during the first stages: reduce the bias (SSH, SST, SSS) with a smooth error covariance matrix
then to use an unsmooth error covariance matrix
to use something like a "leap-frog error covariance matrix"

It's underway ...

Conclusion

there are some problems regarding the analysis stage, not only because of the size but because the dynamics is different

- is it impossible to solve these problems: no

- does it take a while: probably

- when it is fixed, we can focus on the restart of the model:

it might be straightforward (same as $1/3^{\circ}$) or not . . .