

Northeast North American Shelf Heat and Freshwater Transport

John Wilkin, Paul Goodman, John Evans

Ocean Modeling Group

Comparisons with mean seasonal

Institute of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ

jwilkin@rutgers.edu http://marine.rutgers.edu/~wilkin

ROMS Model Configuration

A Regional Ocean Modeling System (ROMS) model is embedded within open boundary values provided by **GODAE North Atlantic operational model HYCOM**

ROMS operational model configuration: Domain:

- · Eastern Gulf of Mexico to Newfoundland, out to the Bahamas, New England Seamounts and the tail of the Grand Banks
- 10 km horizontal resolution; 30 vertical s-levels weighted toward the surface

Forcina

- NCEP daily average reanalysis u₁₀ winds, Tain qain cloud, Pain rain, shortwave and downward long-wave from OPeNDAP server http://www.co nph-nc/Datasets/ncep.reanalysis.dailyayos
- · Monthly mean river flow from USGS gauges for 30 largest rivers + Belle Isle Passage low salinity flow into the Gulf of St Lawrence
- Boundary tides from OSU Topex/Poseidon/Jason model
- Open boundary data from HYCOM http://hycom.rsmas.miami.edu/dodsC/ North Atlantic Best Estimate
- daily T,S, u,v (rotated to ROMS grid) for radiation/nudging open boundary conditions - sea level, depth average u, v for Flather (1976) gravity wave open boundary conditions
- 3-day Hycom average T,S for nudging in boundary buffer zone Output:

Output data on OPeNDAP server http://ahab.rutgers.edu:80

Temperature and salinity of east coast shelf waters are affected by inflow from the Labrador Sea and Loop Current, cross-shelf exchange in the South Atlantic Bight (SAB) and Mid-Atlantic Bight (MAB), and the Gulf Stream.

Adequate simulation of the heat and freshwater budgets are a necessary condition for subsequently using the model for studies of shelf biogeochemistry and carbon cycling.

NOPP Project Objectives:

- (1) Develop practical strategies for nesting coastal ROMS within HYCOM open boundary data for stable long-term and operational integrations (year 1-2)
- (2) Quantify skill of nested ROMS and HYCOM-only at reproducing shelf heat and freshwater variability (year 1-2)
- (3) Explore open boundary sensitivity with ROMS adjoint sensitivity tools (year 3-4)
- (4) Examine value of internal data assimilation in ROMS to boundary-forced only simulations (year 4-5)

MAB Cross-shelf Temperature Structure

Overall temperature simulations are good. Neither model captures a clearly distinct "Cold Pool" in summer. Both have water too cold off the shelf edge in winter.

Shelf water volume and freshwater transport

The volume of MAB Shelf Water (S<34) trapped inside the shelf/slope front varies. Observations show the volume anomaly propagates southward through MAB each year. Neither model captures this along-shelf transport signal.

HYCON

Mean salinity of shelf water in **ROMS** has strong freshening trend throughout 2004

ROMS freshening trend is bringing summer salinity closer to L&G climatology

-40 -20 0 20 40

Distance from 100m isobath (km)

