# 1/12° Pacific HYCOM: The End Of A Long Simulation

E. Joseph Metzger, Harley E. Hurlburt and Alan J. Wallcraft Naval Research Laboratory, Stennis Space Center, MS

> HYCOM NOPP GODAE Meeting 27-29 October 2004 RSMAS, Miami, FL

### 1/12° Pacific HYCOM Modeling at NRL

- Initial 1/12° Pacific modeling began in Dec 2001 on the IBM SP at the Maui High Performance Computing Center
- Part of the FY02-FY04 DoD HPC Challenge grant:
   "Basin-scale prediction with the HYbrid Coordinate Ocean"
- Original proposal called for 46 years of both climatological and interannual forced simulations
- Completed 60 years of integration under Challenge:
   17 climatological + 43 interannual

### Major 1/12° Pacific HYCOM Experiments

- Climatological forced:
  - HR winds/ECMWF fluxes: 14 years
  - ECMWF winds/ECMWF fluxes: 20 years
- Interannual forced: 3 or 6 hourly
  - ECMWF winds + fluxes: 1979 2003
    - Highest horizontal/vertical resolution basin-scale simulation run for this long with interannual forcing
    - Integrated on ARL IBM SP3
      - ~1.45E6 Sus (4900 hrs x 297 processors)
    - Took 11 calendar months to complete
    - Generated 17.3 Tb of output
  - FNMOC NOGAPS winds + fluxes: 2001 8/2004
    - Initial state from this experiment will be used in a simulation with data assimilation

## Basin-wide Mean Circulation HYCOM Mean SSH



1/12° Pacific HYCOM – ECMWF climatological forcing

## Basin-wide Mean Circulation 1992-2002 Mean SSH



Niiler et al. (2003, GRL) - 40 cm bias removed









## **Equatorial Currents Zonal velocity along the equator**



### **Equatorial Temperature**



### **Equatorial Salinity**



## Disappearance of the Equatorial Undercurrent During the 1982-83 El Niño

Zonal velocity on the Equator at 159°W

Adapted from Firing at al. (1983)

1/12° Pacific HYCOM



Yellow/red = eastward flow, blue = westward flow
HYCOM forced with interannual ECMWF winds and heat fluxes
No oceanic data assimilation

## Currents in the Western Equatorial Pacific WEPOCS III observations vs. HYCOM

July-August-September upper ocean currents



**WEPOCS from Lukas et al. (1991, JGR)** 

## Vector Correlation WEPOCS III observations vs. HYCOM

## WEPOCS III JAS 1988 mean vs. HYCOM JAS means for individual years

| 1980 | .34 | 1987 | .31         |
|------|-----|------|-------------|
| 1981 | .46 | 1988 | <b>.</b> 60 |
| 1982 | .47 | 1989 | .51         |
| 1983 | -11 | 1990 | .32         |
| 1984 | .52 | 1991 | .37         |
| 1985 | .53 | 1992 | .43         |
| 1986 | .33 | 1993 | .50         |

## Kuroshio Extension Surface Currents Vectors color-coded by speed



### Interdecadal Variability in the Kuroshio Extension SST anomalies (140°E-180°, 32°-38°N)



Observations from Reynolds and Smith (1994, J. Climate)
Anomaly relative to 1982-2001 monthly climatology
Collaboration with B. Qiu and S. Chen (U. Hawaii)

### MODAS SST vs. 1/12° Pacific HYCOM

2003 Mean error



NOGAPS wind/thermal forcing; radiative fluxes corrected to SOC mean
White area ± 0.5°C

### Scientific Interest in Pacific HYCOM Output

- Z. Yu (U. Hawaii)
  - project to study equatorial subsurface countercurrents, namely the Tsuchiya Jets
- E. Firing and F. Ascani (U. Hawaii)
  - project to study sub-thermocline extra-equatorial jets
  - symmetric currents extending from about 400 1500 m with eastward (westward) flow ~1.5° (~3°) on either side of the equator
- J. Kool (RSMAS)
  - Developing an agent-based model of intraspecific genetic diversity; using HYCOM output for development and testing

### Scientific Interest in Pacific HYCOM Output

- L. Rothstein and Y. Luo (U. Rhode Island)
  - Looking at the Mixed Water Region in the Kuroshio Extension region
  - Analyzing the Kuroshio's impact on the subtropical/subpolar exchange processes
- P. Niiler and C. Ohlmann (UCSD)
  - ONR funded project to compare HYCOM output with 1990-1999 drifting buoy data in the California Current region
- W. Cheng (U. Washington)
  - Comparing model pycnocline transport across
     9°S/9°N with observations

### Scientific Interest in Pacific HYCOM Output

- Y. Jia (U. Hawaii IPRC)
  - Developing nested Hawaiian Islands HYCOM
  - Using BC's from 1/12° Pacific HYCOM
  - Plans call for a high resolution model with data assimilation to predict near-shore sea states, and to provide information for local fisheries, search and rescue operations and hazard management
- L. Thompson (U. Washington) and K. Kelly (APL)
  - ONR funded project to evaluate 1/12° Pacific HYCOM using satellite and in situ observations
  - Long term goal is to improve high resolution ocean models through evaluation and analysis of model subsurface and thermal structure

#### Future Plans for Pacific HYCOM

- Begin a simulation with data assimilation
  - NCODA system developed by Jim Cummings
  - FNMOC NOGAPS forcing
  - Start in 2001 and integrate to near real-time
- Transition a near real-time, data-assimilative, semioperational Pacific HYCOM nowcast/forecast system to NAVOCEANO by the end of FY05
  - Will probably run once per week
  - 1/12° is the target resolution for the global nowcast/forecast system set for transition to NAVOCEANO in FY07