The Possible Influence of the NAO on the Mediterranean Outflow Water Path in the North Atlantic

Alexandra Bozec1, Eric Chassignet1, George Halliwell2, Zulema Garraffo2, Susan Lozier3 and Nicole M. Stewart3

1Center for Ocean-Atmospheric Predictions Studies, Florida State University, Tallahassee, FL, USA
2Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, USA
3Division of Earth and Ocean Sciences, Duke University, Duke, NC, USA

Hycom meeting, April, 24-26
Outline

• Observations
• Parameterization of the MOW tongue in HYCOM
• Results in the 1/3° resolution HYCOM
• Future work
Observations

From Lozier and Stewart, 2006
On $\sigma_1 = 32.10$; at MOW core

Increasing salinity anomaly

Lozier and Stewart, 2006
Weak westerlies: NAO-

Strong westerlies: NAO+

Lozier and Stewart, 2006
Comparison of the outflow representation in different model resolution of the ATL

• 2° simulation: ATLc2.00 (2deg-PY)
 – Initial state: GDEM3 climatology
 – Forcing: ECMWF-ERA40 climatology

• 1°x0.5°: ATLc1b.00 (extracted from global configuration) (1deg-med and 1deg-PY) (Y. Yang and T. Ozgokmen)
 – Initial state: GDEM3 climatology
 – Forcing: ERA40 climatology

• 1/3° : ATLc0.32 (0.32deg-PY) (Z. Garraffo and G. Halliwell)
 – Initial state: GDEM3 climatology
 – Forcing: interannual NCEP 1948-2003
The Price and Yang model (Price and Yang, 1998) is used as a boundary condition to prescribe the outflow in the HYCOM ocean model. Specified parameters are:

- Med. Surf. Fluxes
 - E-P-R over Mediterranean
 - Net Heat flux over Mediterranean
- Specified Atlantic Ocean Water Properties
 - \(\rho_1, S_1 \) of Gibraltar inflow water
 - Density, salinity of entrained interior water at shelf-slope break
- P-Y Model Output
 - Gibraltar outflow , \(S_2, Q_2 \)
 - Entrained interior water transport
 - Final product water \(\rho_3, S_3 \), depth, transport(\(Q_3 \))

(implemented in HYCOM by George Halliwell)
Model Grids
Price and Yang in ATLc2.00

Simulation 2° (climatology: ERA40 forcing)

- Depth: 1000m

2deg-buffer: with buffer zone in the Gulf of Cadiz

2deg-PY: with Price and Yang
Price and Yang in ATLc1.00

Simulation $1^\circ \times 0.5^\circ$ (climatology: ERA40 forcing)
Depth $= 1000\text{m}$
Price and Yang in 1/3° ATL: 0.32 deg-PY
First results: 0.32deg-PY
Conclusion/summary

• The mechanism of expansion/contraction found in the observations is also present in the 1/3° HYCOM interannual simulations.
• Future work: Can we find a relation between the NAO and the salinity anomalies in the Rockall Trough as in the observation? If yes, can we develop a physical explanation for the expansion/contraction mechanism as a function of NAO?