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A typical dense water outflow from a high-latitude or marginal sea
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Research motivation
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dThe dense water outflows from high
latitude and marginal seas play an
important role in the Earth’s climate and
climate change

» They carry dense water resulting from air-sea interaction into
the deep ocean, set up the water properties and circulation of
the deep ocean, and provide a connection between the
atmosphere and the deep ocean.

» The downward fluxes and spreading of outflow water mass in
the deep ocean initiate upwelling elsewhere and return flow in
the upper ocean, therefore completing an overturning cell.
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The Challenges

4 . . .
d Outflow representation in oceanic general
circulation models is challenging

» High computational cost to resolve the fine topographic details.
» The difficulty to prescribe the entrainment process.
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/EI Different model formulations have different

levels of challenge

» Fixed coordinate OGCMs (z or terrain-following o) suffer from
excessive numerically induced diapycnal mixing. In particular, z-
coordinate OGCMSs do not have enough vertical resolution to resolve
the outflow plume.

» Isopycnic coordinate models have no numerically induced diapycnal
mixing. The focus is to prescribe the entrainment explicitly.
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Outline

Development of an entrainment parameterization
for HYCOM (Xu et al., 2006)

Evaluation of the new parameterization by
comparing a regional simulation to field data

Sensitivity study of the parameterization to
horizontal and vertical resolutions

Evaluation of the Price-Yang marginal sea
boundary condition using regional HYCOM
simulations

Conclusions
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Entrainment rate, WEMU

Summary (1)

a A linear function, E=0.2(1-Ri/0.25), was found to reproduce quite
well the fundamental aspects of the outflow as predicted by a
nonhydrostatic model.

O The parameterization is consistent with the fundamental
theoretical and laboratory results of stably-stratified flows: the
shear-induced turbulence grows (decays) in the regime of Ri less
(larger) than 1/4, respectively.
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Outline
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2. Evaluation of the new parameterization by
comparing a regional simulation to field data
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‘ Plume structure
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Summary (2)

Regional HYCOM simulation reproduced the
main features of the observed Mediterranean
outflow in the Gulf of Cadiz, including the
evolution of plume behavior, the spreading and
descent of the plume, and the downstream
evolution of water properties and volume
transport, which was controlled by the localized
entrainment just west of the strait.



Outline

Sensitivity study of the parameterization to
horizontal and vertical resolutions
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Summary (3)

Q The representation of topography plays an important
role in simulating an outflow since the outflow is
bottom-trapped and flows across the isobath.

Q The performance of the entrainment parameterization
varies when the horizontal resolution changes, in

specific, the entrainment becomes weaker as
resolution decreases.

A The performance of parameterization is greatly
affected by the vertical resolution. The simulated
MOW descends to the bottom when there is only 4

layers between outflow source water and product
water.



Outline

Evaluation of the Price-Yang marginal sea
boundary condition using regional HYCOM
simulations
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Salinity snapshots
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HYCOM versus
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Summary (4)

Although the Price-Yang MSBC does not

resolve any detall of the outflow as the regional
HYCOM simulations, it reproduces comparable
outflow variations associated with the changes

iIn the outflow source water and the ambient
ocean water.



A Given an adequate resolution, HYCOM simulations with
the entrainment parameterization put forward by Xu et al.
(2006) are able to reproduce the observed evolution of
the Mediterranean outflow in the Gulf of Cadiz.

O The same parameterization performs differently as the
resolution varies, especially, the parameterization does
not work well with coarse vertical resolution, the simulated
MOW descends to the bottom with 4 layers between
source and product water.

A When compared to the output of HYCOM simulations, the
Price-Yang MSBC produces fairly realistic variations in
product water associated with the changes in the outflow
source water and the ambient ocean water.



Outlooks

A Can the Xu et al. entrainment parameterization
work for other outflows than the
Mediterranean?

ad Can it be applied throughout the Atlantic basin?
In particular, is the parameterization valid for
the EUC?

3 Is representation of finer topography (i.e.<
0.08°) important in simulating the
Mediterranean outflow in the Gulf of Cadiz?



