Regional model simulations around Hawaii: Open BC and evaluation with local data

Max Yaremchuk, Jim Potemra, Yanli Jia, Peter Hacker

International Pacific Research Center University of Hawaii

Outline

1. STATUS REPORT

- a) 2001 simulations at 0.08° and 0.04° resolutions
- b) experiments with open BC
- 2. Evaluation with local data: HYCOM vs other GCMs
 - a) tidal stations
 - b) TOPEX/POSEIDON altimetry
 - c) CTD/XBT
- 3. Conclusions
- 4. Vision for 05/06
- 5. Technical issues

Hawaiian Islands configuration

100E 110E 120E 130E 140E 150E 160E 170E 180W170W160W150W140W130W120W110W100W 90W 80W 20S

Pacific Basin experiment 1979-2003:	Hawaiian regional experiments 2001-2002:			
Resolution 0.08° Forcing: ECMWF 6-hour winds modified near Hawaii ('00-'03); bulk heat flux, E-P + relaxation to climatological SSS Indonesian throughflow, Bering Strait closed 3° sponge layers at the open boundaries with relaxation to monthly T/S	164°W – 152°W; 16°N – 26°N Resolutions: 0.08°, 0.04°,, 0.01°? Open boundaries: width of the nudging zone: 10-20dx Relaxation times: 0.1-50 d			

Experiments with open BC

- 1. 12-18 months: (01.01.2001-30.06.2002)
- 2. Relaxation to reference T,S,p,U,V, linearily interpolated in time and space , $\tau_1 = 1...50$ d; $\tau_2 = 0.1...5$ d.

2001 simulations

Corr=+0.28

Corr=+0.26

Corr=+0.35

Difference between two open BC configurations

Comparison with tidal data

Comparison with T/P data

Cross-validation of the models using SSH

Model-data correlations

Station	HY.08	HY.04-0	HY.04-1	OfES(EC)	OfES(QS)	NLOM	SODA
Hilo	.33	.19	.15	17	.23	.06	07
Honolulu	.16	.32	.17	23	.18	.12	08
Kahului	.07	.27	.25	15	.13	.22	30
Kawaikae	.53	.66	.51	37	.41	.21	.14
Mokuoloe	.33	.29	.08	22	.19	.20	01
Nawiliwili	.26	.36	.43	.15	.36	.11	.15
mean	.28	.35	.26	16	.25	.16	03
Pl	51	.01	43	.38	.24	.08	.15
P2	.48	.34	.46	.17	43	15	.53
P3	.37	02	.33	32	32	.54	.38
P4	00	52	08	.41	03	01	.51
P5	52	53	38	.19	.30	.00	.57
mean	03	14	02	.17	05	.09	.44

Qscat vs ECMWF

10.

Y

.

2 Bo - - - - 11 1.

1 e 🛌

"A has les ""

Comparison with CTD data (HOT2 station)

Data assimilation

Low-resolution data (2^o - .25^o resolution) Global:

- 1. SSH altimetry (track, gridded (. 33^o), 7 days)
- 2. SST (gridded, 0.16°, every 5-7 days)
- 3. SSS (gridded 0.16°, every 5-7 days?)

Local:

- 4. Tidal stations (continuous)
- In situ soundings, ADCP profiles (HOT cruises, 0.1^o, every 2-4 weeks)
- 6. Surface & ARGO drifters (1- 3°, 1- 10 days)

Hi-resolution data for nested configurations

(0.04°-0.01° resolution, Local):

- 1. Coastal HFR radars (0.01°, 10-20 min)
- 2. Gliders (T/S, 0.01°, 10-20 min)

Method:

MVOI, PMOA, ROIF/ROAF, SEEK filter?...

Conclusions

- 0. Experiments with open BC seem to show better performance with the relaxation time scale of 1-10 days
- 1. Higher resolution seems to provide better agreement with tidal data (regHYCOM-0.08 vs regHYCOM –0.04)
- 2. Pacific HYCOM 0.04 is in better agreement with tidal data than global OfES (0.10), NLOM, and SODA/POP1.4
- 3. All GCMs considered (HYCOM, NLOM, OfES) are doing bad with regard to T/P data [without assimilation].
- 4. QuikScat winds definitely improve model performance in reproducing tidal station records (OfES-ECMWF vs OfES-QScat)
- 5. Data assimilation improves performance with regard to T/P data but has no effect on performance with regard to tidal station data (SODA/POP1.4)

- 1. Comparison with local data, other models (global OfES, MIT Hawaian regional ROMS) - ongoing, and data assimilation products (MIT, SODA, Pacific/global HYCOM?)
- Experiments with higher resolution wind forcing (Qscat, 0.25°; local NOAA product, 0.02°) and bottom topography (up to 0.01° in area h < 2000m around Hawaii)
- 3. Nesting up to 0.01°
- 4. Start implementing sequential data assimilation

- 1. HYCOM data assimilation products/software
- 2. Module for tracers (ongoing project with local fisheries)
- 3. Tidal module (important for higher-resolution nested configurations)
- 4. Configuring HYCOM for Altix3000, Linux cluster?