The influence of mesoscale activity on the primary production in the Norwegian Sea

Cecilie Hansen

Nansen Environmental and Remote Sensing Center

Outline

- ◊ Objective
- ♦ The current system in the Norwegian Sea
- ◊ Ecosystem in the Norwegian Sea
- Physical and biological models used in the experiment
- ◊ Preliminary results
- ◊ Future work

Current system in the Norwegian Sea

Furevik and Nilsen 2005, The Nordic Seas: An Integrated Perspective

Objective

Objective: Influence of the front dynamics on the primary production

Furevik and Nilsen 2005, The Nordic Seas: An Integrated Perspective

Ecosystem in the Norwegian Sea

Three dominating plankton groups:

- ◊ Diatoms
- Flagellates (Prymnesiophytes)
- ◊ Dinoflagellates

The bloom is set off by:

- Shallowing of the pycnocline
 - Freshening of coastal water due to ice melting and river runoff
 - ◊ Windconditions

Physical model: Hybrid Coordinate Ocean Model

- ◊ 23 vertical layers
- KPP-mixing scheme
- Forcing with ERA40-fields
- A three-model system

Nested system

- NorthAtlantic model, horizontal resolution: 50-80 km
- ◊ North Sea/Norwegian Sea model, horizontal resolution ~ 15 km
- ◊ Small model of part of the Norwegian Sea, horizontal resolution ~ 4.5 km
- Boundary conditions from outer model, including boundary conditions for the biological variables

Horizontal resolution

Concentration of Diatoms in may, 1978 Concentration increasing from left to right

100

80

60

40

20

Ecosystem model: NORWECOM

- ◊ NORWECOM: The <u>NORW</u>egian <u>ECO</u>logical <u>M</u>odel System
- ◊ 10 compartments
- ◊ 2 phytoplankton classes: Diatoms and Flagellates
- ◊ Nitrate, silicate and phosphate
- Detritus and biogenic silicate
- Oxygen
- ◊ Yellow substances and sediments

Skogen and Søiland 1998, Fisken og havet, nr.18

Ecosystem model

- Nutrients added by rivers
- Production limited by light or concentration of nutrients
- ♦ Aggregation/flocullation not included
- Death rate constant down to a minimum concentration of phytoplankton

Skogen and Søiland 1998, Fisken og havet, nr.18

Connections between primary productivity and mesoscale activity?

Silicate/phosphate data

Comparison with data

Silicate (mgS/m3) and Diatoms (mgN/m3) Data from www.ices.dk

Comparison with data

Phosphate (mgP/m3) and Flagellates (mgN/m3) Data from www.ices.dk

Comparison with data

Temperature and Salinity Data from www.ices.dk

Mesoscale activity and primary production

Phosphate concentration (mgP/m3) 30.07.78 Speed (m/s) 30.07.78 68⁰N 0.35 0.3 66⁰N 0.25 0.2 64⁰N 0.15 0.1 62⁰N 0.05 60⁰N 4°E 4°W 0⁰ 8°E 12⁰E 4°E 4°W 0⁰ 8°E 12°E

68⁰N

66⁰N

64⁰N

62⁰N

60⁰N

20

15

10

5

- ♦ The influence of frontal dynamics on the marine ecosystem
- ♦ The influence of jump in NAO in 1995/1996 on the primary production in the Norwegian Sea
- Modelling the increased heatflux in the North Atlantic Current in 2002 and its possible influence on the primary production
- Providing food-fields for Zooplankton-model
- Sensitivity study of the inflow from the Baltic Sea on the primary production in the North Sea

- Topograpy-following bottom layer of fixed depth would help the ecosystem-programming a lot!
- Path of the North Atlantic Current
- Source of the sediment/resuspension in hycom?

Equations for the biological parameters

$$\frac{\partial N}{\partial t} + adv(N) = diff(N) + R_{Dia} + R_{Fla} + cc_4Det - (P_{Dia} + P_{Fla}) + \phi(N) \frac{\partial P}{\partial t} + adv(P) = diff(P) + cc_1(R_{Dia} + R_{Fla} + cc_4Det - (P_{Dia} + P_{Fla})) + \phi(P) \frac{\partial Si}{\partial t} + adv(Si) = diff(Si) - cc_2P_{Dia} + scc_4Sis + \phi(P)$$

$$\frac{\partial Det}{\partial t} + adv(Det) = diff(Det) + cc_3(Dia + Fla) - cc_4Det + \phi(Det) \frac{\partial Sis}{\partial t} + adv(Sis) = diff(Sis) + cc_2(R_{Dia} + cc_3Dia) - scc_4Sis + \phi(Sis) \frac{\partial Dia}{\partial t} + adv(Dia) = diff(Dia) + P_{Dia} - R_{Dia} - cc_3Dia + \phi(Dia)$$

Equations continues

$$\frac{\partial Fla}{\partial t} + adv(Fla) = diff(Fla) + P_{Fla} - R_{Fla}$$
$$- cc_3Fla + \phi(Fla)$$
$$\frac{\partial Oxy}{\partial t} + adv(Oxy) = diff(Oxy) + scc_1(P_{Dia} + P_{Fla})$$
$$- -R_{Fla} - R_{Dia} - cc_4Det) + \phi(Oxy)$$