Initial Progress on HYCOM Nested West Florida Shelf Simulations

George Halliwell
MPO/RSMAS, University of Miami
Major Goals and Plans

- Test Model Performance in the Coastal Ocean:
 - Nesting algorithm
 - Vertical coordinate choice
 - Vertical mixing choice
 - Impact of pressure gradient error over steep topography

- West Florida Shelf Study
 - Strong offshore forcing due to loop current and associated eddies
 - Collaboration with R. Weisberg, USF
 - Compare HYCOM to observations and to other model simulations (POM, ROMS)
West Florida Shelf Simulation (1)

- **Initial/Boundary Conditions**
 - From Atlantic basin simulation
 - 1/12 degree horizontal grid
 - 26 vertical layers
 - High-frequency forcing
 - SSH assimilation
 - Available after mid-September 2002

- **Domain and Mesh**
 - West Florida Shelf, Pensacola to Florida Bay
 - Rectangular grid, 1/12 degree resolution
 - Same resolution and grid points used for the Atlantic basin simulation
 - 22 vertical layers
 - Same target isopycnic densities as the Atlantic basin simulation except that the four densest layers were removed
West Florida Shelf Simulation (2)

• Bathymetry
 – From ETOPO5
 – Limited to >10m isobath
 • Minimum depth of 30m
 – Same bathymetry used for the basin-scale simulation

• Forcing
 – ECMWF climatology plus FNMOC high-frequency anomalies
 • Same forcing used for the basin-scale simulation
 – Tidal forcing not implemented

• Time Interval
 – October 2 through December 2, 2002

• Observations for Validation
 – None available from USF for this initial test
West Florida Shelf Simulation (3)

• Will look at:
 – Nesting performance
 – Influence of vertical coordinate choice
 – Influence of vertical mixing choice
 – KPP bottom boundary layer model
Nesting Performance

• A nested simulation was run with the identical grid, bathymetry, forcing, and vertical mixing choice (KPP) used by the Atlantic basin simulation that provided the initial/boundary conditions.

• Simulated fields differ substantially over the continental shelf/slope between the Atlantic basin and nested simulations.

• The only significant difference is that the Atlantic basin simulation uses SSH assimilation while the nested simulation does not.
Vertical Coordinate Choice

- Two Choices Compared:
 - z-isopycnic
 - Sigma-isopycnic
Vertical Mixing Choices to be Compared

• Vertical Mixing Models Tested
 – KPP (K-Profile Parameterization) (with bottom b.l.)
 – MY 2.5 (Mellor-Yamada level 2.5 turbulence closure)
 – GISS (NASA/GISS level 2 turbulence closure)
 – PWP (Price-Weller-Pinkel dynamical instability model)
Mixed Layer Thickness
26.16N Cross-Sections
KPP Bottom Boundary Layer

- Added Bottom B.L. Parameterization to the KPP Model
 - Follows procedures developed for the ROMS model at Rutgers U. by Scott Durski
 - Essentially implement the surface b.l. parameterization from the bottom up

- Cross sections of viscosity and temperature diffusivity are presented here
Summary (1)

• Large differences between nested and Atlantic basin simulations must be understood
• Significant (but not huge) differences observed in the shelf flow field due to vertical coordinate and vertical mixing choices
• KPP bottom boundary layer code appears to be working, but needs more testing

• These simulations are preliminary – the next round of simulations will be conducted at higher resolution with improved bathymetry.
Summary (2)

• Nesting procedure must be improved
 – Allow non-rectangular curvilinear coordinates
 – Change the vertical coordinate properties of the nested model
 • Requires vertically re-mapping the fields from the larger-domain model that provides initial/boundary conditions

• The help of Ole Martin Smedstad, Joe Metzger, Alan Wallcraft, Pat Hogan, and Tammy Townsend is appreciated.