HYCOM Caspian Sea Modeling.

Part I: An Overview of the Model and Coastal Upwelling

By

BIROL KARA, ALAN WALLCRAFT AND JOE METZGER

Naval Research Laboratory,

Stennis Space Center, USA

MURAT GUNDUZ

Institute of Marine Sciences,

Erdemli, Icel, TURKEY

MOTIVATION

• Caspian Sea model set up

o Resolution, vertical layers, atmospheric forcing, etc

• Upwelling along the eastern coast

o ability of HYCOM in producing upwelling

• Hybrid versus sigma-z simulations

o do they succesfully generate the upwelling ?

FINE RESOLUTION OGCMs

• The Caspian Sea is NOT included in majority of OGCMs

Resolution	OGCMs excluding the Caspian Sea
$1/32^{\circ}$	NLOM (Wallcraft et al., 2003)
	NRL Layered Ocean Model
$1/16^{\circ}$	MFSTEP (Pinardi et al., 2003)
	Mediterranean Forecasting System
$1/12^{\circ}$	HYCOM (Chassignet et al., 2006)
	HYbrid Coordinate Ocean Model
$1/12^{\circ}$	DMI (Buch and She, 2005)
	Danish Meteorological Institute
$1/8^{\circ}$	NCOM (Barron et al., 2006)
	Navy Coastal Ocean Model
$1/3^{\circ}$	MERCATOR (Ferry et al., 2005)
	Mercator Ocean

HYCOM SET UP FOR THE CASPIAN SEA

Grid resolution:	$[1/25^\circ\cos(\mathrm{lat}) imes1/25^\circ]$
	$pprox 3.2 \ { m km}$
Vertical layers:	Two configurations
	25 layer hybrid and 30 level sigma-z
Initialization:	Russian data-based T/S climatology
Mixed layer:	K–Profile Parameterization (KPP)
Bathymetry:	Modified DBDB-2 with the Russian data
Bottom layer:	Active bottom boundary layer
Atm. forcing:	ERA-40 climatology (1979-2002)
River forcing:	Three major rivers as runoff
Turbidity:	SeaWiFS ocean color data
Bulk formulas:	Sensible and latent heat fluxes
Relaxation:	Sea surface salinity only
Assimilation:	None

BOTTOM TOPOGRAPHY

- DBDB-2 in the Caspian Sea is not correct.
- The Russian data set was used to modify it.

o HYCOM uses land-sea isobath of 2 m.

o Maximum depth is $\approx 1015~m$.

TEMPERATURE and SALINITY INITIALIZATION

- Basin-averaged T/S from the Russian data
- Temperature gradually drops with depth.
- Salinity is constant $\approx 11.8 \text{ psu below 50 m.}$
- Temperature has more effect on density.

RIVER DISCHARGE IN THE CASPIAN SEA

- HYCOM reads in monthly mean river discharges.
- Runoff addition to the surface precipitation field.

HYCOM SIMULATIONS

- Use KPP mixed layer model
- Perform climatologically–forced simulations
- Run 5 years until statistical equilibrium
- Run another 4 years and form monthly means
- As mentioned before, there is
 - no data assimilation, and
 - **no** relaxation except for sea surface salinity.

SENSITIVITY SIMULATIONS

What is the importance of heat and salinity fluxes in simulating upper ocean quantities in the Caspian Sea? Note: Net buoyancy flux is the sum of o buoyancy due to heat flux and o buoyancy due to salinity (i.e., E–P) flux. • Four sensitivity simulations: o expt 1: standard simulation (30 level sigma-z) o expt 2: twin of expt 1 but no salinity relaxation o expt 3: twin of expt 1 but no E-P o expt 4: twin of expt 1 but no rivers o expt 5: twin of expt 1 but no E-P and no rivers

 \bullet Meridional averages of variables from $40.5^\circ N$ to $45.0^\circ N$

UPWELLING NEAR THE EASTERN COAST

• Summer SST from AVHRR (16 June 2001)

AVHRR: Advanced Very–High Resolution Radiometer

MOVIES OF SST

- Snapshots of daily HYCOM SST from
 - o 25 layer hybrid
 - o 30 level sigma–z
- Existence of upwelling near the eastern coast
- We typically use daily MODAS SST as truth

o because it is a satellite-based re-analysis product.

• However, it is not included in the movies

o because MODAS has no SST in the Caspian Sea.

ANNUAL MEAN SST BIAS

\bullet Bias (°C) with respect to 4 km Pathfinder SST climatology

• Basin-averaged SST bias:

 $\mathbf{o}\approx\mathbf{0}^{\circ}\mathbf{C}$ for both simulations

• Large SST error near the eastern coast: Upwelling issues!!

RMS SST OVER THE SEASONAL CYCLE

\bullet RMS (°C) with respect to 4 km Pathfinder SST climatology

• Basin-averaged RMS SST difference:

o $1.4^\circ C~(1.2^\circ C)$ for HYBRID (SIGMA–Z) simulation

SUMMARY and CONCLUSIONS

- A fine resolution (≈ 3.2 km) HYCOM Caspian Sea model:
 o model set up for hybrid and sigma-z coordinates
 o climatologically-forced simulations (no assimilation)
 o used coarse resolution (1.125°) ERA-40 forcing
- Initial evaluations for upper ocean quantities:

 o evidence of upwelling consistent with observations
 o net heat flux generally dominates E–P flux
 o SST is well simulated, even with no assimilation
- Ongoing studies and future plans:
 - o processes controlling upwelling near the eastern coast
 - o finer resolution (0.25°) European ECMWF forcing
 - o inter-annual model simulations (1990 through 2006)