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Plan

Range constraints: : HYCOM layers have minimum thickness.

Optimal interpolation: no inequality constraints.

normally distributed errors.

Graphical interpretation: linear regression.

active constraint ≡ additional data

Algorithms: little knowledge of error statistics.

how precise should solution be?

Simple examples: 4 variables, 1 new observation.



Variational formalism

The objective is to reach a compromise x between a

background estimate b of the model state and additional

information provided by observations d based on their

respective error covariances B and D. The minimum of

J(x) =
1

2
(x − b)TB

−1(x − b) +
1

2
(Hx − d)TD

−1(Hx − d)

defines this compromise:

x − b = BH
T(HBH

T + D)−1(d − Hb)

where H selects model counterparts of d.



Posterior covariance matrix

After assimilation, just as the background state b is

updated to get the analysis x, the background

error-covariance matrix B can be updated to get

an analysis error-covariance matrix

A = B − BH
T(HBH

T + D)−1
HB .



Example: 2 variables and 1 measurement
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After assimilation x1 is an information-weighted average

of the prior estimate b1 and the new data d1:
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and the correction to x2 is a regression estimate based on the

correction to x1.

x2 − b2 =
σ2
12

σ2
1

(x1 − b1)



Simple example: 2 variables, 1 observed
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Constraint: layer thickness ≥ 1
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Cell 2 initially has

minimum layer

thickness.

Measurements increase

thickness for cell 1.

No problem.

What if measurement

decreases thickness

for cell 1?

Optimum would be

at constraint boundary.



Possible prescription

Simply correct by inflating to minimum thickness.

But what if more than two variables?

Should all layers that are too thin be inflated to the minimum

thickness?

Should values any of the other variables be adjusted?

Should some constraint-violating thicknesses be inflated beyond

the minimum?



Next example: 3 variables, 1 observed
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Observe cell 1. Get

constraint violation for

cell 3

Constraint line provides

corrected thickness for

cell 3.

Enforcing constraint for

cell 3 requires a

correction for cell 2

Get another regression

problem. Suggests

second pass with

constraints as data.



Another case: 3 variables, 1 observed
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Thicknesses for both

cells 2 and 3 are too

small after correcting

cell 1.

Inflating both to

minimal thickness is not

optimal.

When cell 2 has

minimum thickness,

optimum for cell 3 is

somewhat larger than

minimum.



Two expensive approaches

Quadratic programming considers all possibilities for enforcing

range constraints.

Markov Chain Monte Carlo for non-Gaussian integrals.

Any inexpensive approaches?

Error covariances are poorly known, so it doesn’t pay to be too

picky about finding a precise solution to the resulting math

problem.

Maybe enforcing all violated constraints and accounting for the

impact on the other variables is good enough.



If we know which constraints to enforce

Inequality constraints that are not violated can be ignored.

Those that are violated can be treated like equality constraints

and enforced with Lagrange multipliers.

A practical strategy is to assume that all violations should be

enforced.



Variational formalism revisited

Using Lagrange multipliers y, the constrained minimum of J

corresponds to a stationary point of:

L(x, y) = J(x0) +
1

2
(x − x0)

T
A
−1(x − x0) − (Px − c)Ty

where x0 is the unconstrained minimum of J(x) and A is the

posterior error-covariance matrix, and where the enforced

constraints are Px = c.

Stationarity requires that x − x0 = APTy, so the Lagrange

multipliers are given by y = (PAPT)−1(c − Px0). Thus, the

constrained solution is:

x − x0 = AP
T(PAP

T)−1(c − Px0) .

Compare: b → x0, B → A, H → P, d → c, and D → 0.



Algorithm 1

Correct constraint violations using

x − x0 = AP
T(PAP

T)−1(c − Px0) .

Most difficult part of solving is computing the posterior error

covariance matrix

A = B − BH
T(HBH

T + D)−1
HB .

If D is diagonal, then A can be computed sequentially, one

observation at a time.

Approximate algorithm

Following lead of optimal interpolation, where covariances are not

updated after assimilation, use B rather than A.



Algorithm 2

Append constraints c to d and treat as error-free data.

Append P to H and expand D with zeros.

Redo assimilation.

Involves solving a larger (rather than smaller) problem

on the second pass, but not necessary to know A.

Requires only minimal changes to existing data-assimilation codes.

Gives exactly same results as algorithm 1.



Four-variable computational example
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σ2
b = 1 and σ2

d = 0.01.

Assimilating data

causes constraint

violation three cells

away.

Treating constraint as

data fixes the problem.

Both algorithms give

same result.

Not updating B to A

before 2nd pass works

almost as well.



Modified example
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Same errors as before.

Observed thickness is

smaller.

Assimilation causes

problems for 2 cells.

Correcting only the

worst violation fixes the

other one.

Correcting both gives

about the same answer.



Conclusions

Range constraints can be enforced economically.

Simplest is to enforce constraints without regard for implied

corrections.

Implied corrections can be computed by treating enforced con-

straints like error-free data, which should be assimilated on a

second pass.

Few changes are needed for existing assimilation software.

Cost of finding the minimal subset of violations to enforce to

get an ”optimal” solution, is not justified given lack of precise

knowledge about errors.


