The multivariate properties of the Ensemble Optimal Interpolation in the Gulf of Mexico

François Counillon
PhD Student

Supervisor: Ola M. Johanessen, Laurent Bertino, Geir Evensen

Project: NFR
Outline

- Model characteristics
- Data assimilation
- EnOI formulation
- Parameter alpha
- Localisation
- Multivariate correlation
- Linear assumption
- Results
Gulf of Mexico model

- Using **HYCOM 2.1.03**
- Grid size of 5 km, 22 Hybrid layers
- **GEBCO 1** minute bathymetry
- Forcing from ECMWF
- Nesting condition from: **TOPAZ 2**

Picture of Stephen Robin
Ocean Focus
TOPAZ 2 model system

- TOPAZ: Atlantic and Arctic
 - HYCOM (http://www.hycom.org)
 - EVP ice model coupled
 - 18-35 km resolution
 - 22 hybrid layers
- EnKF, (http://enkf.nersc.no)
 - 100 members
 - Sea Level Anomalies (CLS)
 - Sea Surface Temperatures (Reynolds)
 - Sea Ice Concentrations (SSM/I)
- Runs weekly since Jan 2003
 - ECMWF forcing
 - Validation http://topaz.nersc.no

Nested systems run daily or weekly
Data assimilation

• High resolution model can reproduce the mesoscales dynamics and their variability in the GOM.
• Eddies are clearly visible in the altimetry. We expect assimilation of SLA to correct the position of the fronts and to change the water column properties accordingly.

NB: We are not assimilated SST in order to more clearly determine the multivariate impact of SLA assimilation.

Ensemble Optimal Interpolation:

- Covariance are based on an historical ensemble composed of 2.5 year weekly model output (135 members) without assimilation
- Covariance are 3D multivariate
- Conservation of the dynamical balance of the model
- Temporal invariance of the covariance matrix
- Numerically cheap
EnOI

\[X^a = X^f + \alpha A'A'TH^T (\alpha HA'A'T H^T + \varepsilon_0 \varepsilon_0)^{-1} (Y - HX^f) \]

Kalman Gain
obs-model

\[X : \text{model state (} \eta, t, s, u, v, \text{thk); (a:analysis; f:forecast)} \]
\[A' : \text{centered collection of model states (} A' = A - \bar{A}) \]
\[Y : \text{observations} \]
\[H : \text{interpolates from model grid to observation} \]
\[\varepsilon^0 : \text{Observation error} \]
\[\alpha : \text{rebalance ensemble variability to realistic level} \]
Parameter α

α is introduced within 0..1, to rebalance the ensemble variability to the one of the observation.

Ensemble variability > instantaneous variability

Too low value of α → too little efficiency
But
Too large value of α → side effect

Persistent population of cyclonic and anticyclonic eddies
The variability of SLA remains relatively constant
$\alpha=1$ in our case
Localisation

Can an observation in the western GOM help resolve the circulation in the eastern part?
Until what range does an observation can be useful?

Are we keeping the dynamical balance?
Oke (2006) has shown that we keep the geostrophic balance as long as the radius is bigger than the decorrelation radius.
Ensemble multivariate properties

- We study here the correlation induced by an increase of SSH at 2 characteristic locations.

Two target points:
1. West of the Loop Current
2. North of the Loop Current
Target point 1: Correlation SLA vs Velocity

corr_vel = sqrt(corr_u^2 + corr_y^2)
arrows represent correlation
pink circle corresponds to the radius of local assimilation
number describes positive corr with growth of cyclones
Target point 2: Correlation SLA vs Velocity

\[\text{corr}_\text{vel} = \sqrt{\text{corr}_\text{u}^2 + \text{corr}_\text{v}^2} \]

Arrows represent correlation.
Pink circle corresponds to the radius of local assimilation.
Number describes positive corr with growth of cyclones.
Section for the 2nd Target point
Correlation SLA vs Temperature

- Positive corr with:
 - Surface layer
 - SUW layer
 - Increase of the LCW inflow

Radius of assimilation
Correlation SLA vs Salinity

positive corr with:
SUW layer

Increase of the LCW inflow
Correlation SLA Layer thickness

- Increase of the SUW layer thickness
- Deepening of the active layer of the LC
- React as a buffer layer, satisfy the motionless abyss hypothesis

[Graph showing depth and correlation with labels and color legend]
EnOI Linear assumption

Scatter plot between SST and SSH: Significantly linear

$R=0.55209$
Temperature update

Forecast

Analysis
Salinity update

Forecast

Analysis

NERSC

Mohn-Sverdrup Center
Global Ocean Studies - Operational Oceanography
Assimilation shock? (1/2)

Forces the assimilation with $\alpha=2.5$ (usually using 1)
Assimilation shock ? (2/2)

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.
Comparison with SST

29nd of November (forecast+4)
After 2 years of weekly assimilation!

With SST not assimilated nor relaxed

No bias induced by assimilation on SST
Comparison with OC

29th of November (4 days Forecast)

Overlay of model SSH isolines on a OC MODIS map (not assimilated)
Future work

• Comparing EnOI vs EnKF (NOPP project)

• Including track assimilation into EnOI (and other Kalman filter based DA method)

• Estimate the predictability with the use of stochastic forecasting (Financial support from Shell EP)