What to do about salinity when assimilating XBT data?

Results for estimating salinity in the Gulf of Mexico and in the Northwestern Atlantic Ocean.
I’m Carlisle Thacker

and I approve of this message.
What to do when temperature is observed, but density is important?

- When XBT data are assimilated, salinity must be corrected along with temperature.

- Incorrect salinity causes incorrect density and currents.

- How to correct salinity without observing salinity?
Two regions as examples.

- **Gulf of Mexico**
 - Loop current, eddies.
 - Broad shelves with deep central basin.
 - River inflow.
 - Many bad data.

- **Large North Atlantic region containing the Gulf Stream**
 - Very large T and S variability.
 - Shelf in north but mostly deep ocean.
 - Gulf Stream inflow.
 - Few bad data.
Gulf of Mexico
3485 CTD stations – many redundant.

Most stations in shallow water. Few in south.

No problem.

Sub-sampled to avoid near duplicates. - 739 stations used.
Problems with archived data:

- Sampling is not uniform.
 - Local high-density sampling.
 - Few samples in south.

- Some data are bad.
 - Flags are not very helpful.

- Distributions are not Gaussian.
 - How to distinguish bad data from heavy tails?
 - Box and whisker plots are helpful.
 - TS plots also show outliers.
A first look at the 3489 CTD profiles for Gulf of Mexico.

Distributions of T and S data in 20 dbar intervals.
Warm outliers between 180 dbar and 200 dbar
Mostly good loop-current data.

All data between 180 dbar and 200 dbar

Notice bad data!
Some profiles have density inversions 37 with inversion greater than 0.01 kg/m3
Equal number of long verification and training profiles

More short verification profiles
TS plots
training + verification data

• Data interpolated at 25 dbar pressure intervals.

• Mean T vs. mean S at all levels indicated in red on each panel.

• Warm-salty Loop Current values are not on mean TS curve.
Skill explaining independent data

Estimated and observed salinity

Robust parabola

RMS prediction error (psu)

0.05 psu at 200 dbar

0.20 psu at 50 dbar

0.01 psu at 900 dbar
Residuals of robust parabola show no systematic seasonal or spatial behavior at 25 dbar.
Stommel's method misses Loop Current

Models derived from CTD data are considerably more accurate than those inferred from climatology.
How good is density?

Might want better near the surface.

Get same accuracy with regression models for density.
Northwest Atlantic
Discarded data from shelf.

CTD stations in Northwestern Atlantic study area
Bwplots for Gulf Stream Region

Distributions of CTD observations in NW Atlantic

Distributions of CTD observations in NW Atlantic
TS plots at 4 levels

NW sub region

SE sub region
1390 stations with long profiles in northwestern Atlantic
Training and verification stations
Skill explaining independent data

NW sub-region

200 dbar
$P_4(T)$ residuals at 25 dbar

NW sub-region
Other variables help near the surface

Subset of profiles with data within 2 dbar of the surface.

- T: temperature
- d: day-of-year
- λ: Longitude
- S_0: surface salinity
Estimated vs. observed

28 randomly selected NW profiles

Calibration error?
NW models applied to SE data

Between 200 and 400 dbar, NW model has smaller prediction errors for SE data than for NW data.

T temperature
d day-of-year
\(\lambda \) longitude

0.025 psu

Mediterranean water

\[P_4(T) \]

\[P_4(T) + \tilde{P}_d(d) \]

\[P_4(T) + \tilde{P}_d(d) + \tilde{P}_\lambda(\lambda) \]

\(P_4(T) \) for NW verification data
SE sub-region

Skill explaining independent SE data

T temperature
λ longitude
φ latitude
d day-of-year

SE models

0.02 psu

0.04 psu with latitude as a predictor

\[P_2(T) \]
\[P_2(T) + \tilde{P}_1(\lambda) \]
\[P_2(T) + \tilde{P}_1(\lambda) + \tilde{P}_1(\phi) \]
\[P_2(T) + \tilde{P}_1(\lambda) + \tilde{P}_1(\phi) + \tilde{P}_1(d) \]

0.02 psu
NW profiles
NW model
SE model
SE profiles

Performance near partition
Regression beats Navy’s MODAS system in Gulf Stream triangle.

Best regression model for NW sub-region (Gulf Stream and its eddies)

\[P_4(T) + P_4(d) + P_1(\varphi) \]

4th degree in temperature
4th in day of year
1st in longitude
Except near the surface regression beats Navy’s MODAS system in Sargasso Sea triangle.

Best regression model for SE sub-region (Sargasso Sea)

\[P_2(T) + P_1(\phi) + P_1(\phi') \]

2nd degree in temperature
1st in latitude and longitude
Regression beats Navy’s MODAS system in Gulf of Mexico.

Best regression model for Gulf of Mexico

$P_4(T)$

4th degree in temperature
Conclusions:

- Regression beats using climatological T and S.
- Can handle fronts.
- Where to draw regional boundaries?
- Accurate near-surface estimates are difficult.
- Can use to check salinity calibration in CTD archives.
- Can also check ARGO float calibration.
- Big ocean – still lots of work to do.
- Can use MODAS until more regions are modeled.
- MODAS is being reworked.