IMPROVING THE PARAMETERIZATION OF ERRORS STATISTICS FOR DATA ASSIMILATION IN A HYCOM BAY OF BISCAY REGIONAL CONFIGURATION

P. BRASSEUR, G. BROQUET, J.M. BRANKART, F. CASTRUCCIO, C. LAUVERNET and J. VERRON

LEGI – Laboratoire des Ecoulements Géophysiques et Industriels – Grenoble, France

Ocean Sciences meeting, 2008, Orlando, 03 – 08 March 2008

Context

- Development of the **SEEK** (Singular Evolutive Extended **Kalman filter**) Data Assimilation system for both scientific and operational (MERCATOR / GODAE / HYCOM) mesoscale applications : *Pham et al., 1998; Brasseur and Verron, 2006*

- The SEEK in **MICOM/HYCOM** : experiments in **North Atlantic configurations** within the DIADEM/TOPAZ European project : *Brankart et al., 2003; Birol et al., 2004; Rozier et al., 2007* and at the NRL : *Parent et al., 2007*

- Development of a HYCOM Bay of Biscay configuration at the SHOM

→ application of the SEEK filter to a HYCOM regional configuration in a coastal zone : the Bay of Biscay model

Previous issues of the SEEK applications (in OPA / MICOM / HYCOM basin configurations) made more critical because of a higher complexity near the coasts at high resolution : difficulties with the usual crude assumptions of Data Assimilation systems.

Issues on KF/DA errors statistics

KF Forecast step

$$\mathbf{x}_{i+1}^{f} = m\left(\mathbf{x}_{i}^{a}\right)$$
$$\mathbf{P}_{i+1}^{f} = \mathbf{M}\mathbf{P}_{i}^{a}\mathbf{M}^{T} + \mathbf{Q}$$

KF Analysis step

$$\mathbf{K}_{i+1} = \mathbf{P}_{i+1}^{f} \mathbf{H}^{T} (\mathbf{H} \mathbf{P}_{i+1}^{f} \mathbf{H}^{T} + \mathbf{R})^{-1}$$
$$\mathbf{x}_{i+1}^{a} = \mathbf{x}_{i+1}^{f} + \mathbf{K}_{i+1} \left(\mathbf{y}_{i+1} - h \left(\mathbf{x}_{i+1}^{f} \right) \right)$$
$$\mathbf{P}_{i+1}^{a} = \left(\mathbf{I} - \mathbf{K}_{i+1} \mathbf{H} \right) \mathbf{P}_{i+1}^{f}$$

Errors in the KF (DA in general):

- Gaussian / not constrained despite constrained model variables

- \mathbf{P}_0 , \mathbf{Q} and \mathbf{R} a priori described with simple characteristics for calculations

 \mathbf{P}^{f} usually stationary $\mathbf{P}^{\mathsf{f}} = \mathbf{P}_{0}$; $\mathbf{Q} = 0$ (see also in SEEK $\mathbf{Q} = \alpha \mathbf{M} \mathbf{P}_{a} \mathbf{M}^{\mathsf{T}}$) with \mathbf{P}_{0} estimated:

• analytically (OI, variational systems) : problem of isotropy/homogeneity, stronger in coastal zones

- with the model variability (+ order reduction: through EOF decomposition in the SEEK): supposes that the model main modes have well reproduced real dynamics
- → no true description of a model error Q, whose weight is higher in coastal zones

Incorrect representation of error spatial and multivariate covariances:

- → unbalanced new initial conditions, violating some laws of the model
- → adjustment in the observed sub-space, but lack of sensible extrapolation of the obs information

Applying the KF in HYCOM

Pb of bad representation of error highly sensitive in HYCOM: constrained variables, changes in T,S and p strongly dependent in the hybrid space. Some usual answers:

→ DA in z space (strong loss of background and obs information from regridding)

→ In the SEEK: extrapolation of data is strongly limited (cancellation of many covariances)
 + adjustment operator (loss of statistical optimality): correction after analysis of densities (*T/S*) and of *p* for hydrostatic stability and insuring the minimum layer thicknesses

Objective : describing more realistic/adapted errors in the HYCOM state space to - generate more balanced new initial conditions during the KF analysis step - improve statistical results on both observed and non observed variables Two approaches (1) generating/using a better estimation of Q

(2) including model inequality constraints on errors/in the KF process

The Bay of Biscay model

Forcings at open boundaries: method of characteristics for barotropic variables: p_b , (u_b, v_b) ; relaxation for baroclinic variables: S, T, p', (u',v')

Forcings at the surface: Bulk formulation for heat flux, wind stress imposed, no fresh water flux (atmospheric parameters: w, T_a , q_{lw} , q_{shw} , E_v)

An ensemble method for model error statistics estimation

Broquet et al. 2007

Q build from a sample of the model response to perturbations in the main source of error (realism of the estimation and allowance for error non Gaussian/linear propagation)

1) Identification of **main sources of model error**: increased role and weak representation of **surface forcings** in regional case

2) Generation of an ensemble of "perturbed" forcings: use of an **ensemble of realistic forcings**, assuming that the temporal variability (weekly and inter-annual) of data is representative of the forcing error statistics over a given season

3) Generation of the related ensemble of simulation representative of the model error

Distribution of 176 anomalies on T_a , w and SST at (11.7°W,45.4°N) and t=16d

Gaussian pdfs generated on not strongly constrained atmospheric parameters/model variables

→ optimal trade off between KF assumptions and realism of error distributions

Imposing inequality constraints in the KF

Lauvernet et al. 2008

Development of a **Truncated Gaussian filter**: an adaptation of the KF to deal with errors of TG pdfs

Description of the "true state" distribution as the TG
 distribution N(x^f, P^f, I) associated with an usual "true state" Gaussian
 distribution N(x^f, P^f) and a natural set of inequality constraints I : the

hydrostatic stability and the minimum layer thicknesses condition

$$\rho_k - \rho_{k+1} \le \epsilon$$
$$p_k - p_{k+1} \le 0$$

$$p_k \geq p_k^{\min}(H)$$

2) Application of **traditional KF update** $(\mathbf{x}^{f}, \mathbf{P}^{f}) \rightarrow (\mathbf{x}^{a}, \mathbf{P}^{a})$ giving the updated optimal error distribution $N(\mathbf{x}^{a}, \mathbf{P}^{a}, I)$

3) Calculation of the **error variance minimizing estimator from** N(**x**^a,**P**^a,I) to forecast **x**^f: **use of a Gibbs sampler.**

Quasi-normal approximation: \mathbf{P}^{f} is obtained with classical KF forecast step from \mathbf{P}^{a} . A true TG ensemble forecasting on the sample of $N(\mathbf{x}^{a},\mathbf{P}^{a},I) \rightarrow N(\mathbf{x}^{f},\mathbf{P}^{f},I)$ has been tested on a z-coordinate ML model for conservation of hydrostatic stability Schematic onedimensional TG pdfs associated to N(0,1) with constraint I : x≤1 or x≤-1

Representers of error covariances

Bennett, 1992 ; Echevin et al. 2000

KF analysis state update

 $\boldsymbol{K} = \boldsymbol{P}^{f} \boldsymbol{H}^{T} [\boldsymbol{H} \boldsymbol{P}^{f} \boldsymbol{H}^{T} + \boldsymbol{R}]^{-1}$ $x^{a} = x^{f} + K[y - Hx^{f}]$

Representer :

If y scalar (1 obs) :

If y scalar (1 obs):
$$x^a = x^f + \lambda r$$

Representer : $r = (P^f H^T) / (H P^f H^T)$
Representer for Q: $r_o = (Q H^T) / (H Q H^T)$

- Their convergence with the sample size is used to check the ensemble Q statistics convergence

- They confirm the strong anisotropy / inhomogeneity of the dynamics

- They show through the use of **Q** in the KF a **limited** influence of surface observations at depth and a large spread of their influence in the mixed layer

SST field of representers of SST obs

Impact of the error parameterization for DA

Twin experiments on 60 days, with atmospheric forcing perturbation: the **SEEK filter is applied to assimilate SST** on the perturbed simulation with different static **P**^f:

- **P**^f = the control run (REF) **daily variability** on the 60 days (no order reduction): **EXP1**
- **P**^f = the 59 main EOFs of **Q estimated through the ensemble method**: **EXP2**

- In **EXP1**, the state is degraded in the non observed sub space / great impact of adjustment operator

In EXP2, improvements on the whole state space / dynamically balanced adjustments: weak impact of the adjustment operator (both objectives are reached)

RMS error between REF and EXP1 (top) / EXP2 (bot.)

Gaussian vs TG observational update (1)

Identical twin experiments: in **EXP3**, the SEEK is applied to assimilate SST with the same **P**^f parameterization as in EXP1 and the **TG observational update** instead of the classical Gaussian update

Zonal section (at 45.9N) of

In **EXP1**, all constraints are violated: density inversions, negative layer thicknesses, *p* below minimum value

In EXP3, no more density inversion, all layers have retrieved their minimum depth (even in the s-coordinate region), and positive 1 thickness.

Density profile belonging

Gaussian vs TG observational update (2)

- The warming relative to the Gaussian update with adjustment operator or with TG update occurs above the first density inversion of the profile in **EXP1**

- For the full 3D temperature field, the RMS error is

0.72°C for the Gaussian estimate

0.83°C after the adjustment operation

0.74°C for the truncated Gaussian estimate.

With the TG observational update T values remain closer to the observations than with the adjustment operator

Conclusion

- Study of two error parameterization aspects
- → two different methods for an improved application of the SEEK filter / DA systems
- Both ensure :
 - a statistically more optimal extrapolation of the observation information
 - a more physically consistent solution
- Impact of **Q** realistic parameterization → fundamental role of the error covariances parameterizations in DA system
- TG description of error is sensible and more adapted
- \rightarrow These studies have to be expanded :
 - application of ensemble methods to estimate the error model linked to other
- **sources** + linear combination with realistic P_0 for realistic experiments
 - full TG process to be used on the real size problem of the Bay of Biscay
- \rightarrow Combination and generalization of these procedures for other applications / other OGCM

Thank you !

