Implementation of the Reduced Order Information Filter
ROIF
Data Assimilation Scheme in HYCOM

An Update on Tuning Experiments in Progress
&
Computational Performance

Ashwanth Srinivasan, Mike Chin, Eric Chassignet
and
Arthur Mariano
Reduced Order Information Filter

Information Filter:

- Algebraically same as the Kalman Filter
- Propagates the Information Matrix which is the inverse of the Covariance matrix
- Often a convenient form to circumvent computational and numerical difficulties associated with Kalman Filter recursion

Reference: Chin, Mariano & Chassignet 1999.
Reduced Order Information Filter

- Gaussian Markov Random Field (GMRF) is used to parameterize the Information Matrix
- A regression operator encodes the correlation in the error process

\[e_j = \sum_{i \in Z} \alpha_{ij} e_{j-i} + v_j \]

MRF order 2 Neighborhood
Reduced Order Information Filter

- Regression operator implies a sparse Information matrix
- Degree of sparseness is the order of the spatial/diagnostic model
- MRF order = 2 => Penta diagonal Information Matrix
- $O(N^2)$ Information Matrix approximated with $O(n \times N)$ elements Reduced Order Information Matrix
Twin Experiments with 1/12° HYCOM configured for Gulf of Mexico
GOMd0.08 Configuration:

Configuration:
- 1/12° horizontal grid (258x175 pts; 6.5km average spacing)
- 89 to 98 W Longitude and 8 to 31 N Latitude
- 20 vertical layers
- Forcing from NOGAPS/FNMOC
- Monthly River Runoff
- Relaxation of U,V,T,S to 1/12 N. Atlantic Model
Twin Experiments Configuration

- Used **GOMd0.08 package** from the HYCOM FTP site

- **Truth** – Output from running the GOMd0.08 package as configured – Aug 1999 – Dec 2000

- **Reference** – Run the GOMd0.08 configuration, no assimilation without the restart file

- **ROIF – TP Assimilation** – Run the GOMd0.08 model with assimilation of SSH sampled under TP tracks from the Truth run without a restart file

- **ROIF – Random Assimilation** - Run the GOMd0.08 model with assimilation of SSH sampled randomly from the Truth run without a restart file (same no of data pts as the TP run)
Domain and Topex/Poseidon Tracks and Random Sampling Locations
Twin Experiments with ROIF
Twin Experiments with ROIF
Twin Experiments with ROIF
Twin Experiments with ROIF
Multi-Layer ROIF & ROIF-vd

- A full multi-layer version of ROIF will use a vector GMRF.
- We use a simpler implementation called ROIF-vd, vertically decoupled.
- A single layer ROIF runs in each layer.
- This version does not update the vertical correlations dynamically. The vertical correlations must be externally supplied.

- We are currently using statistics extracted from a 2x2 degree North Atlantic Run to vertically distribute the SSH signal.
- Results are expected to be much better when we have the statistics from the 1/12° GOM truth run.
ROIF Computational Performance

- **CPU Time**: ~3X as the free model
- **Storage**: ~6X as the free Model

Timer Statistics

<table>
<thead>
<tr>
<th>Function</th>
<th>Calls</th>
<th>Time</th>
<th>Time/Call</th>
</tr>
</thead>
<tbody>
<tr>
<td>cruity</td>
<td>7320</td>
<td>1216.85890</td>
<td>0.16623755</td>
</tr>
<tr>
<td>tsadvc</td>
<td>7320</td>
<td>7779.08540</td>
<td>1.06271658</td>
</tr>
<tr>
<td>momtum</td>
<td>7320</td>
<td>2990.61990</td>
<td>0.40855463</td>
</tr>
<tr>
<td>barotp</td>
<td>7320</td>
<td>221.92470</td>
<td>0.03031758</td>
</tr>
<tr>
<td>thermf</td>
<td>7320</td>
<td>97.68880</td>
<td>0.01334546</td>
</tr>
<tr>
<td>lc****</td>
<td>7320</td>
<td>0.01310</td>
<td>0.00000179</td>
</tr>
<tr>
<td>mx*****</td>
<td>7320</td>
<td>1506.64760</td>
<td>0.20582617</td>
</tr>
<tr>
<td>conv**</td>
<td>7320</td>
<td>0.01070</td>
<td>0.00000146</td>
</tr>
<tr>
<td>diapf</td>
<td>7320</td>
<td>0.01390</td>
<td>0.00000190</td>
</tr>
<tr>
<td>hybgcn</td>
<td>7320</td>
<td>767.74540</td>
<td>0.10488325</td>
</tr>
<tr>
<td>restrt</td>
<td>2</td>
<td>0.73090</td>
<td>0.36545000</td>
</tr>
<tr>
<td>overtn</td>
<td>2</td>
<td>0.05580</td>
<td>0.02790000</td>
</tr>
<tr>
<td>archiv</td>
<td>31</td>
<td>3.33030</td>
<td>0.10742903</td>
</tr>
<tr>
<td>roifin</td>
<td>1</td>
<td>3.29560</td>
<td>3.29560000</td>
</tr>
<tr>
<td>roifmm</td>
<td>7320</td>
<td>29794.94520</td>
<td>4.07034770</td>
</tr>
<tr>
<td>total</td>
<td>1</td>
<td>44396.65010</td>
<td>44396.6501000</td>
</tr>
</tbody>
</table>

**

(normal)
**
Open Mp/MPI Implementation

![Graph showing Wall Clock Time (s) vs No of Processors for different implementations: Cyan - no assimilation, Red - ROIF-OpenMP, Green - ROIF-MPI.]