Impacts of Ocean Currents and Waves on the Wind Stress Drag Coefficient: Relevance to HYCOM

By

BIROL KARA AND JOE METZGER Naval Research Laboratory (NRL) Stennis Space Center

MARK BOURASSA

Center for Ocean–Atmospheric Prediction Studies (COAPS)

Florida State University

INTRODUCTION

Surface ocean currents and waves influence the wind stress drag coefficient as shown in the literature.

• Ocean models have current speeds but typically they do not include wave information

• Wind stress formulation for input to HYCOM excludes both current and wave effects.

We would like to answer two questions:

(1) What is the impact of currents and waves on the drag?

(2) Are these effects negligible over the global ocean?

WIND STRESS FORMULATION

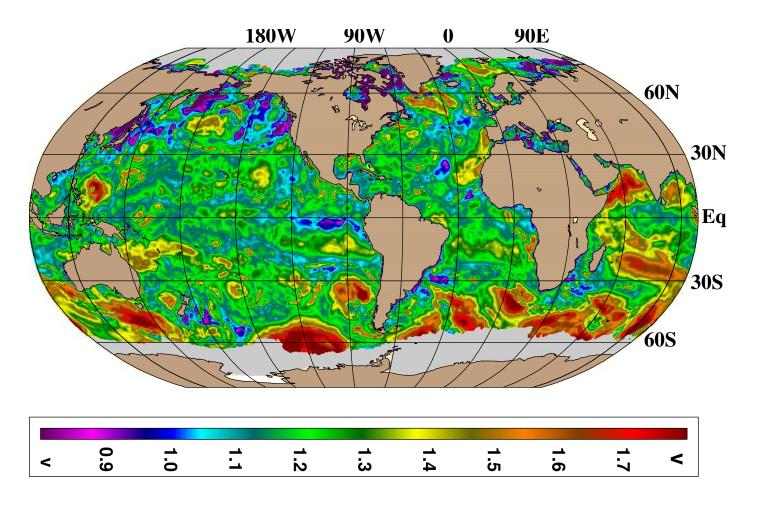
• Wind stress (τ) is parameterized as

 $au =
ho_a \, C_D \, \mathrm{V}^2$

- Thus, au depends on
 - o (1) density of the air: ρ_a
 - o (2) drag coefficient: C_D
 - o (3) squared wind speed V^2
- ρ_a and V are well-known but C_D is NOT.

DRAG COEFFICIENT

• *C_D* depends on


o dynamic stability at the air-sea interface, i.e.
o air-sea temperature difference, and
o relative humidity at the air-sea interface

• HYCOM includes preceding effects (full stability)

C_D also depends on the sea state sea surface current speed ocean wave speed

Our focus is on the effects of sea state!

DRAG COEFFICIENT on 1 Aug 2005 (00Z)

ullet $C_D imes 10^3$ is

o based on polynomial equations (Kara et al. 2005),
o based on the COARE (v3.0) algorithm, and
o formulated using air-sea stability.

NOTE: Currents and wave speeds are NOT included in C_D.

METHODOLOGY

- We would like vector averages of $\vec{V} \vec{VC} \vec{VW}$
- Drop vector notation for simplicity
 - o Wind speed at 10 m: V
 - o Surface current speed: VC
 - o Primary wave speed: VW
- Use zonal and meridional components for V, VC and VW

GLOBAL DATA

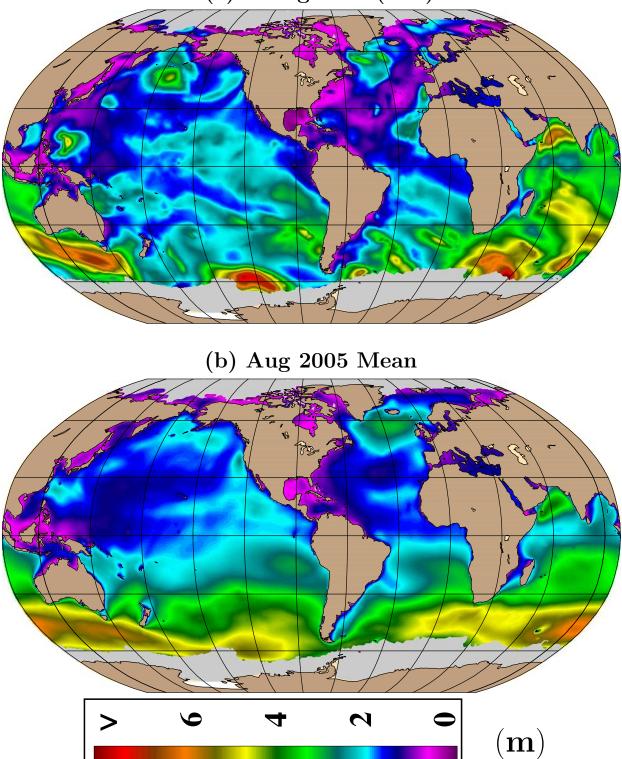
• Data sources:

o V from 1° NOGAPS

o VC from 1/12° HYCOM

o VW from 1° WW3 model

NOGAPS winds are used because


(1) its resolution is consistent with WW3, and
(2) it provides 3 hourly data (important for stability)

Note: We apply 1° binning to VW for consistency.

NOGAPS: Navy Operational Global Atmospheric Prediction System HYCOM: HYbrid Coordinate Ocean Model WW3: Wave Watch 3, a third generation wave model

SIGNIFICANT WAVE HEIGHT FROM WW3

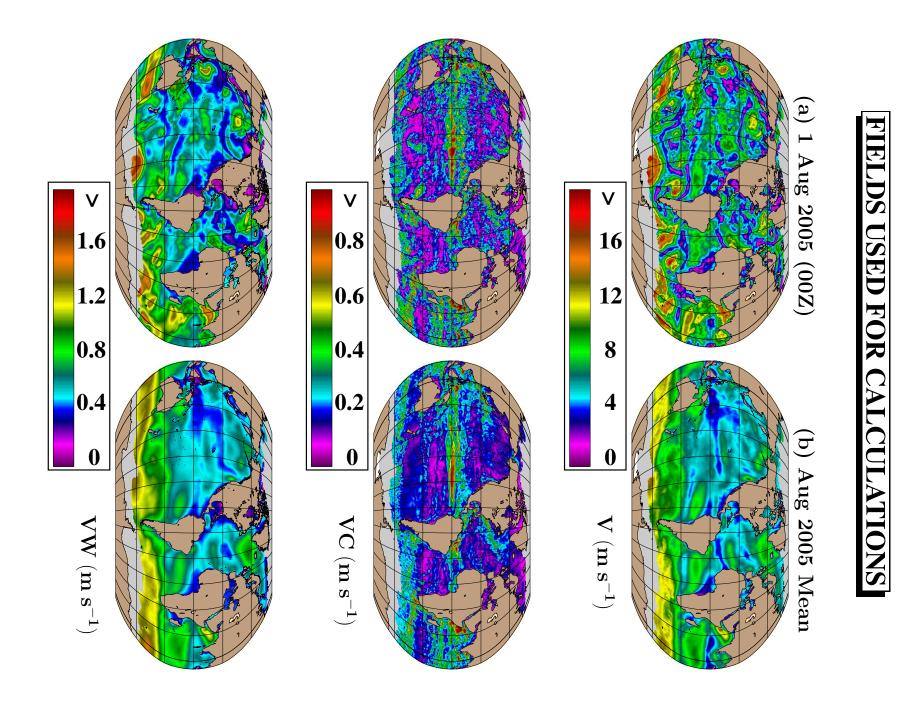
(a) 1 Aug 2005 (00Z)

These are needed for wave speed calculation.

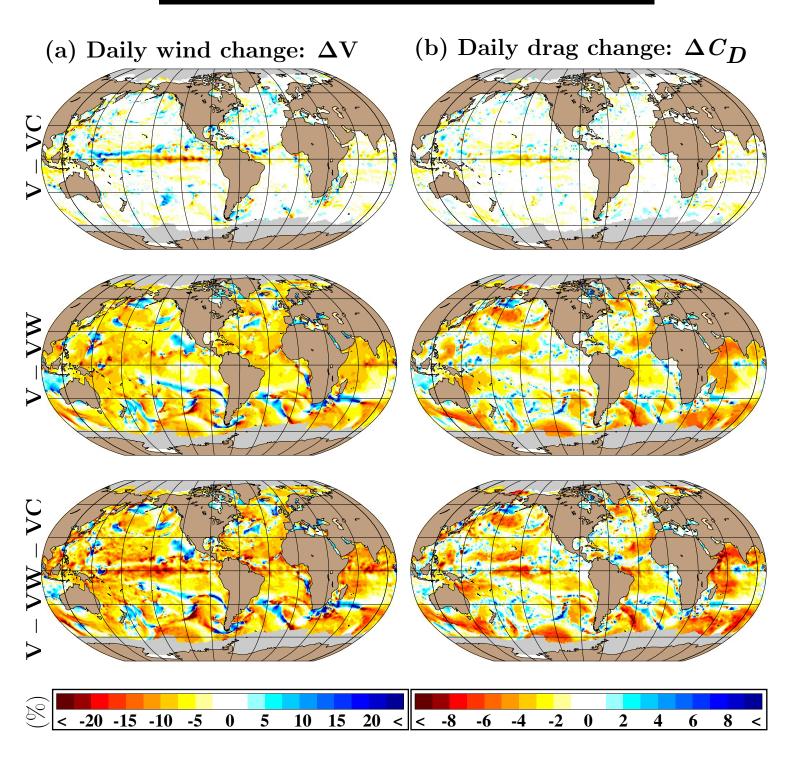
CALCULATION OF WAVE SPEED

V - VC - VW

- V and VC are directly obtained (NOGAPS and HYCOM)
- However, VW has to be calculated (WW3)
- VW is calculated following Bourassa (2006)


 $VW = f V_{orb}$

f is constant (0.8), and $V_{
m orb}$ is the orbital velocity


 $V_{
m orb}=3.14\,H/T$

significant wave height (H)

dominant wave period (T)

PERCENTAGE CHANGES (1 Aug 2005)

VC/VW/VC+VW reduces V by 1.0%/5.4%/6.4% globally VC/VW/VC+VW reduces C_D by 0.3%/1.7%/1.9% globally

PERCENTAGE CHANGES (Aug 2005 mean)

(a) Monthly wind change: ΔV (b) Monthly drag change: ΔC_D C N < -20 -15 -10 -5 < < -8 -6 5 20 0 10 15 -4 -2 0 2 4 6 8 <

VC/VW/VC+VW reduces V by 1.4%/5.5%/6.9% globally VC/VW/VC+VW reduces C_D by 0.4%/1.7%/2.1% globally

CONCLUSION

• Spatial variability in C_D DOES exists o HYCOM already includes this variability o Wind speed, air-sea temp, relative humidity • C_D should also include current and wave effects o Current speed: available at each model time step o Wave speed: what do we do about that? o a statistical relationship may be developed • Globally, combined outcome of wind and wave speed: o Reduction in C_D by 2% only o However, one must note daily spatial variability o western boundary currents (current speed) o high latitudes (wave speed)