Hybrid Wind Stress Anomalies and Their Impacts on the Global HYCOM Simulations ?

By

BIROL KARA, ALAN WALLCRAFT, JOE METZGER, AND HARLEY HURLBURT

Naval Research Laboratory (NRL)

Stennis Space Center

MOTIVATION

- 0.72° Global HYCOM
 - o Climatologically-forced simulations
 - o ECMWF wind stress anomalies for various periods
- Impact of different anomaly periods on global simulations
 - o Sea surface temperature (SST)
 - o Mixed layer depth (MLD)
 - o For Atlantic only and global ocean:
 - o Depth of max. of overturning streamfunction
 - o Max. transport of overturning streamfunction

WIND STRESS ANOMALIES

- We would like to use a time period,
- representing a climatological normal year:
- For historical reasons HYCOM used: Sep94–Sep95
- Other candidate time periods
 - o Sep95–Sep96
 - o Apr97–Apr98
 - o Jan98–Jan99
 - o Aug00–Aug01
 - o Aug01–Aug02

The question is:

Which time interval for wind stress anomalies

is appropriate for realistic HYCOM simulations?

First, why did we choose those time periods above?

SST ANOMALY OVER THE GLOBAL OCEAN

- Use daily MODAS SSTs from 1993 through 2004
- Form daily anomalies (Interannual- Climatology)
- Calculate square of anomaly fields
- Apply 1-year running average

Note that we also selected the 1997–98 ENSO period.

A MOVIE FOR WIND ANOMALIES

- Use ECMWF wind stresses
- 6 hourly anomalies added to monthly means
- This is done for each time period
- A movie of wind speed
 - at each 6 hour time intervals

GLOBAL HYCOM DESCRIPTION

- 0.72° fully global model
 - o 0.36° near equator
 - o Arctic bipolar patch
- 26–layer HYBRID
- Initialization: Navy GDEM3 T/S climatology
- Monthly river discharge from NRL database
- Sea surface salinity relaxation to monthly PHC

PHC: Polar science center Hydrographic Climatology

Atmospheric forcing is from ERA–15

- Bulk formulation for sensible and latent heat fluxes
- Shortwave and longwave radiation from ERA-15
- Water turbidity based on SeaWiFS ocean color data

HYCOM SIMULATIONS

- Use KPP mixed layer model
- Perform climatologically–forced simulations

There is NO data assimilation or relaxation to SST climatology

• All simulations are identical except wind anomalies

ANNUAL MEAN HYCOM SST BIAS

HYCOM bias is with respect to NOAA SST climatology

RMS DIFFERENCE: HYCOM vs NOAA SST

RMS is calculated over the seasonal cycle

ZONAL AVERAGES FOR SST BIAS

ZONAL AVERAGES FOR RMS DIFFERENCES

LOWEST RMS SST DIFFERENCES

Percentage of global ocean coverage:

Anomaly	Percentage	Rank
Sep94–95	14.2%	4
Feb95–96	12.1%	6
Apr97–98	$\mathbf{22.6\%}$	1!!
Jan98–99	13.7%	5
Aug00–01	17.9%	3
Aug01–02	19.5%	2

LOWEST RMS MIXED LAYER DEPTH DIFFERENCES

Percentage of global ocean coverage:

Anomaly	Percentage	Rank
Sep94–95	12.3%	6
Feb95–96	13.5%	5
Apr97–98	17.3%	4
Jan98–99	17.7%	3
Aug00–01	19.0%	2
Aug01–02	20.2%	1

MAXIMUM OF ATLANTIC OVERTURNING

DEPTH OF MAX. OF ATLANTIC OVERTURNING

MAXIMUM OF GLOBAL OVERTURNING

DEPTH OF MAX. OF GLOBAL OVERTURNING

CONCLUSION

- Any anomaly time period can be used
- No significant change is noted in the HYCOM results
 - o (1) climatological means of SST and MLD
 - o (2) northward transport
 - o (3) depth of overturning streamfunction
- However, we typically use snapshots for a daily output
- •The period could be important for 3 hourly model analysis
- HYCOM now uses 6-hrly anomalies from NOGAPS in 2003