An Update on the 1/12° Global HYCOM Effort

E. Joseph Metzger, Alan J. Wallcraft, Jay F. Shriver and Harley E. Hurlburt Naval Research Laboratory

> 10th HYCOM Consortium Meeting 7-9 November 2006 FSU-COAPS, Tallahassee FL

Global HYCOM Configuration

- Horizontal grid: 1/12° equatorial resolution
 - 4500 x 3298 grid points, 6.5 km spacing on average, 3.5 km at pole
- Mercator 79°S to 47°N, then Arctic dipole patch
- Vertical coordinate surfaces: 26-28 for σ_0 , 32 for σ_2^*
- KPP and GISS mixed layer models
- Thermodynamic (energy loan) sea-ice model
- Surface forcing: wind stress, wind speed, thermal forcing, precipitation, relaxation to climatological SSS
- Monthly river runoff (986 rivers)
- Initialize from January climatology (GDEM3) T and S, then SSS relaxation from PHC 3.0
 No subsurface relaxation to climatology
- 7 Nov 2006

• Ran in FY06 at NAVOCEANO on IBM Power 4+ (kraken)

• 216K CPU hrs/model year on 784 dedicated processors

7 Nov 2006

• 3.1 Tb/model year for (compressed) daily 3-D output

 Overall global HYCOM produced reasonable circulation results, however the Gulf Stream system wasn't inertial enough and it had weak flow through Yucatan Channel and the Florida Straits

 At the December 2005 HYCOM meeting, we decided to try an experiment with reduced spatially constant viscosity, reduced Smagorinski diffusion and increased biharmonic dissipation

Experiment List

Experiment	Smag. diffusion	A Spatially Biharm. constant dissipa.		Model Years	Forcing
GLBa0.08-05.2	.1	30	.01	05-09	ERA15-sea
GLBa0.08-05.6	.05	20	.02	08j-13	ERA15-sea

ERA15-sea: 1979-1993 monthly 1st ECMWF Reanalysis, sea only with Sept 1993-1994 ECMWF operational 6-hourly variability

Mean Kuroshio Pathway

Mean Gulf Stream Pathway

Yucatan Channel Meridional velocity cross-section

Mean Transports in the IAS*

Expt.	FC 27°N	Abaco north ward	FC + Abaco	NWP	OBC	Yuc Chan	WW	Mona	Aneg	Less Antil	Lucia Vince Gren
Obs.	30-34	5	37	-1.2	-1.9	23-27	-7.0	-2.6	-2.5	-17.1 (resid) [#]	-10.1
05.2 (7-9)	24.0	8.0	31.8	-2.2	0.0	22.3	-3.6	-2.1	-4.2	-12.1	-8.3
05.6 (9-13)	24.9	3.1	26.9	-2.4	-0.3	22.6	-2.8	-2.4	-4.6	-12.5	-8.0

* Positive transport defined northward and eastward # Residual of Yucatan – WW – Mona - Anegada Weak NWP wind forcing is a second hypothesis regarding the anemic Gulf Stream and IAS circulation

A regression analysis between the 1978-2002 climatological ERA40-sea wind speed and the 1999-2002 QuikScat wind speed reveals a low bias in ERA40

■ Scale ERA40-sea to QuikScat wind speed → ERA40-sec

7 Nov 2006

Experiment List

Experiment	Smag. diffusion	Spatially constant A	Biharm. dissipa.	Model Years	Forcing	
GLBa0.08-05.6	.05	20	.02	08j-13	ERA15-sea	
GLBa0.08-07.1	.05	20	.02	03-04	ERA40-sec	

ERA15-sea: 1979-1993 monthly 1st ECMWF Reanalysis, sea only with Sept 1993-1994 ECMWF operational 6-hourly variability

ERA40-sec: 1978-2002 monthly 2nd ECMWF Reanalysis, sea only and wind speed corrected to 1999-2002 QuikScat wind speed with Jan 2003-2004 0.5° computational grid NOGAPS 6-hourly variability

Ratio of QuikScat / ERA40 wind speed

Mask applied to ice covered areas

Mean Kuroshio Pathway

Mean Gulf Stream Pathway

Yucatan Channel Meridional velocity cross-section

Mean Transports in the IAS*

Expt.	FC 27°N	Abaco north ward	FC + Abaco	NWP	OBC	Yuc Chan	WW	Mona	Aneg	Less Antil	Lucia Vince Gren
Obs.	30-34	5	37	-1.2	-1.9	23-27	-7.0	-2.6	-2.5	-17.1 (resid) [#]	-10.1
05.2 (7-9)	24.0	8.0	31.8	-2.2	0.0	22.3	-3.6	-2.1	-4.2	-12.1	-8.3
05.6 (9-13)	24.9	3.1	26.9	-2.4	-0.3	22.6	-2.8	-2.4	-4.6	-12.5	-8.0
07.1 (4)	26.5	8.0	34.4	-2.5	0.7	24.6	-0.2	-2.2	-4.7	-17.5	-11.7

* Positive transport defined northward and eastward
 # Residual of Yucatan – WW – Mona - Anegada

7 Nov 2006

Long-term Mean Global Sea Level 1992-2002 Mean Dynamic Ocean Topography (0.5°)

The 1992-2002 mean ocean dynamic topography data has been obtained from Nikolai Maximenko (IPRC) and Peter Niiler (SIO)

Long-term Mean Global Sea Level 1/12° global HYCOM

5 year model mean using climatological ERA15 wind and thermal forcing HYCOM mean shifted by 10 cm

Coastal/Island Sea Level Comparison From 1/12° Global HYCOM 2003 statistics at 126 tide gauge stations

RMS Difference

Correlation

Forced with 0.5° computational grid NOGAPS, global HYCOM is reproducing the deterministic response to the wind-driven circulation

SST Response in 1/12° Global HYCOM to Hurricanes Katrina and Rita

HYCOM reproduces the deterministic SST response to the wind forcing. Implies realistic upwelling and mixing of subsurface waters as well as realistic atmospheric wind and heat flux forcing in HYCOM.

7 Nov 2006

West Lombok Meridional Velocity INSTANT (left) vs. GLBa0.08-05.8 (right)

INSTANT data courtesy Janet Sprintall, UCSD-SIO

7 Nov 2006

10th HYCOM Consortium Meeting

FY07 Plans

Multiple 2004 data-assimilative experiments

- 2005 present near real-time run
- Complete a 1993-present "ocean reanalysis" by running a data-assimilative hindcast
- Two non-assimilative simulations:
 - 1995-2007 NOGAPS forcing
 - 1979-2006 ECMWF forcing

• Ten year 1/25° Atlantic demonstration

HYCOM Long-term Goals for Operational Ocean Prediction

- 1/12° fully global ocean prediction system transitioned to NAVO in 2007
 Include shallow water, minimum depth 5 m
 Coupled sea-ice model (LANL CICE)
- Increase to 1/25° resolution globally by the end of the decade
 Optimal resolution for basin-scale
 Boundary conditions for coastal models