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Overview 

 
The vertical velocity w  in Cartesian coordinates is determined by vertically integrating the 

continuity equation 

 ( ) z
z

dw
dz

= −∇ ⋅ v  (1) 

downward from the surface, where subscripts denote the variable held constant during partial 
differentiation. Model variables in HYCOM are stored on a non-Cartesian ( ), ,x y s  coordinate 
system, where the generalized vertical coordinates are surfaces of constant s , typically density in 
the ocean interior and fixed pressure levels near the ocean surface and in shallow coastal regions. 
To use equation (1) to estimate w  profiles at HYCOM grid points, horizontal velocity 
components must be re-gridded to constant z  levels before integrating (1) downward from the 
surface. This re-gridding must be performed at high vertical resolution to provide accurate 
vertical profiles of w . 
 

Since this high-resolution re-gridding is time consuming, a formula is derived here to 
estimate w  profiles directly from fields stored on the HYCOM generalized coordinate system. 
This formula is now included in the HYCOM post-processing program (hycomproc) to estimate 
w  profiles from fields stored on model archives. A different formula is then derived to calculate 
w  during HYCOM runs for the purpose of advecting three-dimensional Lagrangian floats. This 
is accomplished by integrating the HYCOM continuity (thickness tendency) equation downward 
from the surface and combining it with the previously-derived w  profile equation. 

 
 
A Vertical Velocity Profile Equation Suitable for HYCOM Post-Processing 
 

Since HYCOM equations use pressure units for the vertical coordinate, HYCOM vertical 
velocity is defined as 

 .
dp

w
dt

=  (2) 

By converting the vertical coordinate in (1) from z  to p , we obtain 

 .s
s

dw
dp

⎛ ⎞⎟⎜ = −∇ ⋅⎟⎜ ⎟⎝ ⎠
v  (3) 

Since the HYCOM generalized coordinate system is not Cartesian, integration of (3) downward 
from the surface introduces additional terms related to the sloping s  interfaces. The vertical 
discretization consists of layers 1,2,...,k N= , with each layer k  bounded by vertical 
coordinate surfaces located at pressure depths ( ), ,kp x y s  above and ( )1 , ,kp x y s+  below. From 
this point forward, it is understood that s  is held constant in partial differentiation and the 
subscript s  is dropped. 
 



Assuming 0w =  at the surface, vertical velocity at the base of model layer 1k =  is 
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where the integration is carried out from the surface down to an infinitesimal distance above 
interface 2. To obtain the vertical velocity at the top of layer 2, the continuity equation is 
integrated across interface 2 from 2p−  to 2p+ : 
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If interface 2 is not level, then a jump condition arises in the evaluation of the rightmost integral 
in (5). This jump condition is obtained by evaluating the rightmost integral as illustrated for the 
x  direction in Figure 1. The x  derivative of u  is given by 
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The vertical velocity jump across the interface is numerically evaluated by 
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where 22p p pδ + −= − . In the limit as the box defined by xδ  and pδ  in Figure 1 shrinks to zero 
area, / /p x p xδ δ → ∂ ∂  and /2 0xδ → . Thus, ( )2w p+  from (5) becomes, after adding the 
jump condition in the y  direction 
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Continuing the integration downward, the vertical velocity at a pressure level P  within model 
layer 2n ≥ , where 
 ( )1 , 0 1,n n nP p q p p q+= + − < <  (9) 

is 
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It is easy to show that 
 ( ) ( ) ( )[ ]1( ) n n nw P w p q w p w p+ − +

+= + −  (11) 
Thus, w  varies linearly in the vertical within each layer while discontinuities can exist at model 
interfaces. Equation (10) is used to evaluate w  in the HYCOM post processing program 
(hycomproc). 
 

Equation (10) is validated by showing that it gives the correct bottom vertical velocity when 
integrated from the surface to the bottom. If model layer N  is the layer intersecting the bottom 
(the deepest layer with nonzero thickness), then Equation (10) yields the following expression 
for vertical velocity at the bottom: 
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where 1b Np p +=  is the bottom pressure depth. For this bottom velocity to be correct, it must 
equal the bottom velocity derived from the continuity equation for the barotropic velocity. 
Defining barotropic velocity components ,u v  as vertical averages from the surface to the 
bottom, and assuming that surface vertical velocity is zero, the following bottom vertical velocity 
is obtained from the barotropic continuity equation: 
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The barotropic vertical velocity components are given by 
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Equation (12) is obtained by substituting (14) into (13), which validates (10). 
 
 
A Vertical Velocity Equation for Use during HYCOM Runs 

 
It is necessary to estimate w  during HYCOM runs for the purpose of vertically advecting 

synthetic floats. This calculation is made more efficient by taking advantage of calculations 
already made during model runs, specifically the time evolution of the thickness of model layer 
k  calculated by the HYCOM continuity (thickness tendency) equation. The thickness tendency 
equation is integrated downward from the surface and combined with equation (10) to derive the 
expression used to estimate w  during HYCOM runs. 

 
If sub-grid scale processes (thickness diffusion) are neglected, the thickness tendency is 

given by (Bleck, 2002): 
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where ( )/ ks p s∂ ∂  is the entrainment velocity in pressure per unit time across interface k  and 
the subscripts s  indicate that the generalized vertical coordinate is held constant during partial 
differentiation. Equation (15) is summed downward from the surface assuming that the surface 
interface is stationary. The vertical motion of interface 2, with the subscript s  again dropped, is 
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Continuing to interface 3, 
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which results in 
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Rearranging terms yields 
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More generally, the vertical motion of interface 1n +  at the base of layer 2n ≥  is 
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The interface vertical velocity at pressure depth P  within model layer n , with P  given by (9), 
is  
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From (10), the third and fourth lines of (21) are identified as the fluid vertical velocity w  at 
pressure depth P . As a result, (21) becomes 
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The vertical velocity of model pressure interfaces can be separated as follows: 
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If the entrainment velocity is zero, the interface vertical velocity equals /kp t∂ ∂ , which can 
therefore be interpreted as the local vertical velocity of a material surface. Since kp  and kp  
surfaces are co-located at the time vertical velocity is evaluated, equation (22) can be written as 
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The first term on the right side of (24) is the vertically interpolated material surface vertical 
velocity (the vertical velocity of s  surfaces in the absence of diapycnal mass fluxes). The other 
two terms on the right side represent the vertical component of layer k  flow when the layer is 
not flat. It is a function of momentum components within layer n  and the slope of the interfaces 
at the top and bottom of layer n , the latter vertically interpolated to pressure depth P . The 
vertical velocities at the top and bottom of layer n  are obtained by setting 0q =  and 1q = , 
respectively: 
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Vertical velocity at the central depth of layer n  is obtained by setting 1/2q = : 
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From Equation (24), the vertical velocity at the ocean bottom reduces to 
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where bp  is bottom pressure and ,b bu v  are momentum components in the deepest model layer 
with nonzero thickness.  

 
To estimate vertical velocities from Equations (24) through (26), it is necessary to estimate 
/kp t∂ ∂  at all model interfaces k . It can be obtained by solving the HYCOM thickness 

diffusion equation (15) with entrainment velocity set to zero: 
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The advantage to estimating w  during model runs is that /kp t∂ ∂  is already calculated by 
HYCOM in subroutine cnuity.f. It is only necessary to calculate the interface slope terms and 
add them to the interface vertical velocity calculated in cnuity.f. 
 
 
Validation 
 

The two equations for estimating w  as a function of pressure P  [equations (10) and (24)] 
are now demonstrated to be equivalent to each other and to w  estimated by first re-gridding 
velocity components onto level pressure coordinates and vertically integrating (3) downward 
from the surface. Calculations were made within a low-resolution Atlantic simulation. Before 
integrating (3), horizontal velocity components are re-gridded using  

 
( ) ( )

,
( ) ( )

l

l

u p u k

v p v k

=

=
 (29) 

where lk  is the number of the model layer within which pressure depth p  is located. The re-
gridded velocity components ,u v  are then substituted into (3). The vertical integration is 
performed at high vertical resolution (0.1 m, or 0.001 MPa in pressure units) to reduce truncation 
errors and resolve the velocity jumps that exist across model interfaces. The velocity components 



are re-gridded onto pressure depths 0, 0.001, 0.002,...p =  MPa and the numerical integration is 
performed downward from the surface using the trapezoidal rule. 

 
The w  profile resulting from the vertical integration of (3) assuming zero vertical velocity 

at the surface is illustrated in Figure 2 at the model grid point located on the Equator near 28W. 
The profiles obtained from equations (10) and (24), varying P  in increments of 0.1 m, are also 
presented in Figure 2. The profiles are identical within numerical truncation errors, validating the 
derivation of these two equations. Vertical velocity varies linearly within each layer, and jumps 
can exist across model interfaces. These jumps are most clearly evident in the upper 300 m. The 
primary difference among the profiles is that the jumps in w  occur over a finite depth range in 
the profiles calculated from (3) because of the horizontal grid spacing (Figure 1). This depth 
range will decrease toward zero as horizontal grid spacing decreases. 
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Figure 1. Vertical integration of the continuity equation (3)in a non-Cartesian grid across a 
model interface that slopes in the x  direction. 

 



 
 

 
 

Figure 2. Vertical profile of w   in m/day calculated from re-gridding horizontal velocity 
components onto a Cartesian coordinate system and vertically integrating (3) (black line) 
for the upper 3000 m (top) and the upper 300 m (bottom). Also shown are profiles 
calculated from (10) (red line) and from (24) (blue line), each displaced 0.5 m/day to the 
right. 


