
KPP Vertical Mixing 
 
1. Diapycnal Diffusivity in the Ocean Interior 
 

The K-Profile Parameterization (KPP) model is described in detail in Large et al. (1994). To 
summarize the implementation of KPP mixing in HYCOM, model variables are first 
decomposed into mean (denoted by an overbar) and turbulent (denoted by a prime) components. 
Diapycnal diffusivities and viscosity parameterized in the ocean interior as follows: 
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where ( ), ,S mθν ν ν  are the interior diffusivities of potential temperature, salinity (which includes 
other scalars), and momentum (viscosity), respectively. Interior diffusivity/viscosity is assumed 
to consist of three components, which is illustrated here for potential temperature: 
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where s
θν  is the contribution of resolved shear instability, w

θν  is the contribution of unresolved 
shear instability due to the background internal wave field, and d

θν  is the contribution of double 
diffusion. Only the first two processes contribute to viscosity. 

The contribution of shear instability is parameterized in terms of the gradient Richardson 
number calculated at model interfaces: 

 
2

2 2 ,g

N
Ri

u v

z z

=
   ∂ ∂

+   ∂ ∂   

 (3) 

where mixing is triggered when 0 0.7gRi Ri= < . Vertical derivatives are estimated at model 
interfaces as follows: Given model layer k  bounded by interfaces k  and 1k + , the vertical 
derivative of u  at interface k is estimated as 
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where the denominator contains the thickness of layers k  and 1k − . The contribution of shear 
instability is the same for θ  diffusivity, S  diffusivity, and viscosity ( )s s s s

S mθν ν ν ν= = = , and is 
given by 
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where 0 4 2 -150 10 m sν −= × , 0 0.7Ri = , and 3P = . 



The diffusivity that results from unresolved background internal wave shear is given by 

 4 2 -10.1 10 m s .w w
Sθν ν −= = ×  (6) 

Based on the analysis of Peters et al. (1988), Large et al. (1994) determined that viscosity should 
be an order of magnitude larger: 
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mν −= ×  (7) 

 
Regions where double diffusive processes are important are identified using the double diffusion 
density ratio calculated at model interfaces: 
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where α  and β  are the thermodynamic expansion coefficients for temperature and salinity, 
respectively. For salt fingering (warm, salty water overlying cold, fresh water), salinity/scalar 
diffusivity is given by 
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and temperature diffusivity is given by 

 0.7 ,d d
Sθν ν=  (10) 

where 4 2 -110 10 m sfν −= × , 0 1.9Rρ = , and 3P = .  For diffusive convection, temperature 
diffusivity is given by 
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where ν  is the molecular viscosity for temperature, while salinity/scalar diffusivity is given by 
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2. Diagnosis of the Surface Boundary Layer Thickness 
 

The diagnosis of bh  is based on the bulk Richardson number 
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where B  is buoyancy, d is depth, the subscript r  denotes reference values, and where the two 
terms in the denominator represent the influence of resolved vertical shear and unresolved 
turbulent velocity shear, respectively. Reference values are averaged over the depth range dε , 
where 0.1ε = . At depth bd h= , the reference depth bhε  represents the thickness of the surface 
layer where Monin-Obukhov similarity theory applies. In practice, if model layer 1 is more than 
7.5m thick, reference values in (13) are set to those of layer one. Otherwise, averaging is 
performed over the depth range dε . 

The surface boundary layer thickness (which is distinct from mixed layer thickness) is the 
depth range over which turbulent boundary layer eddies can penetrate before becoming stable 
relative to the local buoyancy and velocity. It is estimated as the minimum depth at which bRi  
exceeds the critical value 0.3cRi = . The Richardson number bRi  is estimated in (13) as a layer 
variable, and thus assumed to represent the Richardson number at the middle depth of each layer. 
Moving downward from the surface, bRi  is calculated for each layer. When the first layer is 
reached where 0.3bRi > , bh  is estimated by linear interpolation between the central depths of 
that layer and the layer above. 

The unresolved turbulent velocity shear in the denominator of (13) is estimated from 
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where sC  is a constant between 1 and 2, Tβ  is the ratio of entrainment buoyancy flux to surface 
buoyancy flux, 0.4κ =  is the von Karman constant, and sw  is the salinity/scalar turbulent 
velocity scale. The latter scale is estimated using 
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where xa  and xc  are constants, ( )1/3
* /fw B h= −  is the convective velocity scale with fB  being 

the surface buoyancy flux, and / bd hσ = . Expressions to the right of the arrows represent the 
convective limit. In HYCOM, sw  values are stored in a two-dimensional lookup table as 
functions of 3*u  and 3*wσ  to reduce calculations. If the surface forcing is stabilizing, the 
diagnosed value of bh  is required to be smaller than both the Ekman length scale 0.7 * /Eh u f=  
and the Monin-Obukhov length L . 
 
3. Surface Boundary Layer Diffusivity 
 

Surface boundary layer diffusivity/viscosity profiles are calculated at model interfaces and 
smoothly matched to the interior diffusivities and viscosity. Boundary layer diffusivities and 
viscosity are parameterized as follows: 
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where , Sθγ γ  are nonlocal transport terms. The diffusivity/viscosity profiles are parameterized as 
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where G  is a smooth shape function represented by a third-order polynomial function 
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that is determined separately for each model variable. The salinity/scalar velocity scale Sw  is 
estimated using (15). The potential temperature and momentum velocity scales , mw wθ  are also 
estimated from equations analogous to (15), but with the two constants replaced by ,a cθ θ  and 

,m ma c , respectively. Since turbulent eddies do not cross the ocean surface, all K  coefficients are 
zero there, which requires that 0 0a = . The remaining coefficients of the shape function for a 
given variable are chosen to satisfy requirements of Monin-Obukhov similarity theory, and also 
to insure that the resulting value and first vertical derivative of the boundary layer K -profile 
match the value and first derivative of the interior ν  profile for the same variable calculated 
using (2) through (7) and (8) through (12). 

Application of this procedure is illustrated here for potential temperature only. The matching 
yields 
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After determining the coefficients in (18), the K  profile is calculated using 

 ( )1 ,bK h w Gθ θ θσ σ σ= +    (20) 

where 
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At model interfaces within the surface boundary layer, the K  profile for potential temperature is 
provided by (20). At model interfaces below the boundary layer, the K  profile equals the interior 
diffusivity ( Kθ θν= ). 

The nonlocal flux terms in (16) kick in when the surface forcing is destabilizing. The KPP 
model parameterizes nonlocal flux only for scalar variables. Although nonlocal fluxes may also 
be significant for momentum, the form that these fluxes take is presently not known. (Large et 
al., 1994). The nonlocal fluxes for scalar variables are parameterized as 
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where ζ  is a stability parameter equal to /d L  and L  is the Monin-Obukhov length. The terms 

0' 'w θ  and 0' 'w S  are surface fluxes while the term ' 'Rw θ  is the contribution of penetrating 
shortwave radiation. 
 
4. Implementation 
 



Given the K  profiles for T , S , and momentum at the pressure grid points, the one-
dimensional vertical diffusion equation is solved at each grid point by formulating a matrix 
equation and inverting a tri-diagonal matrix (Appendix C). After solving the equation for all 
variables at the pressure grid points (including velocity components interpolated from the 
momentum grid points), the KPP procedure is repeated beginning with equation (1) using the 
new profiles of all variables. The user can choose how many of these iterations are performed. In 
practice, two iterations are generally found to be adequate. Mixed layer thickness is diagnosed at 
the pressure grid points based through vertical interpolation to the depth where density exceeds 
the surface layer density by a prescribed amount. 

After completing the mixing at pressure grid points, mixing is performed at the momentum 
grid points. Instead of repeating the entire KPP procedure, the mK  profiles estima ted at the 
pressure grid points during the final iteration is horizontally interpolated to the u  and v  grid 
points, then the vertical diffusion equation is solved. 
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