
Hybrid Vertical Coordinate Grid Generator 
 
Bleck (2002) describes the hybrid vertical coordinate grid generator along with its initial 

implementation in a global version of HYCOM. The following description also describes the 
substantial modification to this algorithm that has occurred since then. 

 
1. Vertical Coordinate Adjustment in the Open Ocean 
 

The algorithm controlling the transition between isopycnic and level (p ) coordinates in the 
open ocean works as follows: Consider three consecutive isopycnic layers labeled 0, 1, and 2 in a 
stratified water column where the user has set the minimum thicknesses to 0d , 1d , and 2d , 
respectively. Suppose that specific volume 1α  differs from its isopycnic reference value µ

1α . To 
restore isopycnic conditions, it is necessary to re-discretize the water column in a manner that 
preserves the overall height of the column, represented by the integral dpα∫ , while changing 1α  
to µ

1α . Conservation of the integral requires that one or more layer interfaces must be relocated to 
different pressure levels. If layer 1 is too dense ( µ

11α α< ), the upper interface is moved upward to 
transfer less-dense water from layer 0 to layer 1. If layer 1 is too light ( µ

11α α> ), the lower 
interface is moved downward to transfer denser water from layer 2 to layer 1. This method does 
not work for the model layer in contact with the bottom if it is too light. A special algorithm 
described below is included to handle this case by extruding water into the layer above. 

The two cases µ
11α α<  and µ

11α α>  are discussed separately. For the first case where the layer 
is too dense ( µ

11α α< ), the upper interface is moved upward and mass is exchanged between 
layers 0 and 1. Conservation of dpα∫  requires that the upper interface be moved to the new 
pressure interface 
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Since the weight assigned to 2p  is negative, (1) will not necessarily yield a solution µ
01p p>  for 

large differences between 1α  and µ
1α . This is no problem because the minimum thickness 

constraint is applied to layer 0 by replacing µ
1p  by 

 ° µ
1 2 1 0 0min ,max( , ) ,p p p p = + ∆   (2) 

where 0∆  is a specified minimum layer thickness. Of course, moving the interface to °p  instead 
of µp  no longer permits isopycnic conditions to be restored. 

Following Bleck and Benjamin (1993), the user chooses the absolute minimum thickness 0δ . 
The actual minimum thickness 0∆  is then calculated in a manner that insures a smooth transition 
between the isopycnic and non-isopycnic domains. The function 0∆  is determined by a 
continuously differentiable “cushion” function, which for large positive arguments µ

1 0p p p∆ ≡ −  
returns the argument p∆ (meaning that ° µ

1 1p p= ) and for large negative arguments returns 0δ : 
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where the constants are given by 
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The limits minq  and maxq  control the width of the transition zone between isopycnic and z  
coordinates, and are set to default values of min 2q = −  and max 4q = . When the upper interface 
must be raised, lighter water is entrained to increase 1α  to a value °

1α : 
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However, application of the minimum thickness requirement can make it necessary for the upper 
interface to be lowered ( °

11p p> ) and thus modify layer 0. Conservation of dpα∫  then leads to 

 ° °
°

1 0 0 1 01
0

01

( ) ( )
.

p p p p

p p

α αα − + −=
−

 (6) 

The preservation of minimum layer thickness by increasing the thickness of layer 0 always 
overrides attempts to restore isopycnic conditions. 

For the second case where layer 1 is too light ( µ
11α α> ), the lower interface is moved 

downward and mass from layer 2 is entrained into layer 1. Conservation of dpα∫  yields the new 
pressure level to which the interface must be relocated: 
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To maintain the minimum thickness of layer 2 µ
2p  is replaced by 

 ° µ
2 2 3 2min( , ),p p p= − ∆  (8) 

where 2∆  is determined from the cushion function 
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with µ
3 2p p p∆ ≡ − . The following additional limitations are imposed on 2p% : 

 ( ) ( )[ ]{ }1 1 1 1 2 3 22 2min max , , max /2, .p p p p p p pd d= + − + −% %  (10) 

If layer 1 is the deepest layer with nonzero thickness and it is too light, interface 2 cannot 
move downward to restore isopycnic conditions and a special algorithm must be executed: Since 
only interface 1 can be moved, this interface is moved downward to restore isopycnic conditions 
in layer 1. An “unmixing” algorithm is employed to achieve this goal. The water in layer 1 must 
be restratified into two sublayers such that the density of the upper sublayer exactly equals the 
density of layer 0, the density of the lower sublayer is close to the desired reference density, and 
the density averaged over the two sublayers equals the original layer density. Given 
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interface 1 is relocated using 

 µ
1 2 11 ( ).p p q p p= + −  (11) 

Thermodynamical variables in the lower sublayer are then calculated using 
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for T , and the same equation for S  and a . (Actually, two of the thermodynamical variables are 
diagnosed using (12) with the third estimated from the equation of state). The closeness of lower 
sublayer density to the reference density is sacrificed if necessary to achieve two goals: (1) to 
prevent the thickness of layer 1 from decreasing by more than 50% using 

 ° µ
2 21 1min( , ),p p p= − ∆  (13) 

where ( )2 2 1 / 2p p∆ = − , and (2) to prevent runaway changes in T  and S  using 

 1 0 0 1T T T T−− ≤ −  (14) 

for T  and the analogous equation for S . 
 
 
2. Effects of Cabbeling and the Nonlinear Equation of State 

 
In practice, if T  and S  are fluxed across the relocated interfaces, then perfect restoration of 

isopycnic conditions is not possible ± ¶( )1 1a a≠  due to the nonlinear equation of state. For this 
reason, HYCOM allows the user to choose which two of the three thermodynamical variables T , 
S , and a  are fluxed across the moving interface. In each case, the third variable is calculated 
using the equation of state. When a  is one of the fluxed variables, then cabbeling is not a 
problem. However, since either T  or S  are no longer conserved in this case, it is desirable to 
minimize the negative influence of cabbeling to allow T  and S  to be fluxed across relocated 
interfaces. To achieve this, the following iterative procedure is included to insure in most cases 
that ° µ

1 1α α−  is smaller than a prescribed tolerance after applying the grid generator. The new T  
value that results from raising the interface is 
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With % 1S  estimated in the same manner, a new estimate of °
1α  is made using the model equation 

of state. If ° µ
1 1α α−  exceeds the required tolerance, then µ

1p  is recalculated using 
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In this step, µ
1p  is not permitted to exceed 1p . The resulting specific volume °

1α  is then re-
calculated, and if the prescribed tolerance is not achieved, then µ

1p  is re-calculated by the same 
procedure. The procedure is repeated up to five times if necessary.  

Although uncommon, there is a more significant problem that can arise from the nonlinear 
equation of state when T  and S  are fluxed across relocated interfaces. During HYCOM 
development, cabbeling resulting from vertical coordinate adjustment (in conjunction with T  
and S  horizontal advection and diffusion) caused excessive interface relocation in limited 
regions such as beneath the Mediterranean salt tongue. The nonlinear equation of state can, for 
certain ,T S  profiles, produce either insignificant density changes or density changes of the 
wrong sign within a model layer when the grid generator relocates either the upper or lower 
interface. Repeated application of the grid generator then produces unacceptably large vertical 
coordinate migration. Code is therefore included in HYCOM to suppress the vertical coordinate 
adjustment when the change in 1α  does not have the expected sign or when excessive coordinate 
migration would be necessary to restore isopycnic conditions. 
 
3. The Complete Adjustment Algorithm Governing the p -Isopycnic-Sigma Coordinate 
Transitions 
 

The complete hybrid coordinate adjustment algorithm in HYCOM also includes the transition 
between the open-ocean p  and isopycnic coordinates to sigma coordinates in shallow water and 
back to p  coordinates in very shallow water. This is implemented in a very simple manner. First, 
the user specifies the number of model layers sN  that are to become sigma coordinates along 
with the absolute minimum thickness minδ  that is permitted for the sigma coordinates. These are 
specified in addition to the user-specified open-ocean minimum thicknesses kd  for layer k . The 
minimum thickness of the sigma coordinates is constant for all model layers and is given by 

 ,s
s
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where D  is the total water depth. 
 

The full grid generator is then implemented by calculating the following minimum thickness 
value for each model layer: 

 ° ( )minmax ,min , .k k sδ δ δ δ=     (18) 

In a given model layer, the transition to sigma coordinates occurs where the water depth becomes 
sufficiently shallow to make s kδ δ< . The transition back to level coordinates occurs where the 



water depth becomes sufficiently shallow to make minsδ δ< . Thus, the proper coordinate 
transformation is assured if kδ  is replaced by °kδ  before executing the vertical coordinate 
adjustment. Only the upper sN  layers will transition to sigma coordinates. Deeper layers will 
collapse to zero thickness at the bottom.  
 
4. Implementation Issues 
 

When the hybrid grid generator is called, it is executed separately at each grid point. 
Thermodynamical variables are adjusted first at the pressure grid points. Before adjusting the 
vertical coordinates, the initial one-dimensional profiles of temperature, salinity, and density, 
plus the one-dimensional array of interface pressures, are saved. If the primary Kraus-Turner 
mixed layer model is selected, an unmixing algorithm must be performed so that the 
thermodynamical adjustments are consistent with this model. The model layer containing the 
mixed layer base is divided into two sublayers, and the mixed layer base is temporarily 
considered to be an additional vertical coordinate. Thermodynamical variables in the two 
sublayers are then estimated using the same “unmixing” algorithm that is used in the KTA 
model. 

Once the profiles are saved, the vertical adjustment of vertical coordinates is performed at the 
pressure grid points using the previously outlined procedures. The subsequent adjustments of 
model thermodynamical variables and momentum must conserve their vertically averaged values 
and, for the thermodynamical variables, restore density as close to the isopycnic reference value 
as possible. The classic donor cell scheme satisfies these criteria, but has the undesirable 
property of being directionally dependent. For example, consider a sequence of model interfaces 
that have been moved downward to increase the density of intervening layers. If variables are 
mixed across the relocated interfaces from the top down, the mixing that previously occurred in 
layer 1k −  does not influence the mixing in layer k . If variables are mixed from the bottom up, 
however, the mixing that previously occurred in layer 1k +  does influence the mixing in layer 
k . 

The algorithm included in HYCOM remaps each variable from the old to the new vertical grid 
in a manner that satisfies the two conditions mentioned above, but that is not directionally 
dependent. Given interface pressures kp  on the old grid and °

kp  on the adjusted grid, where K  
is the number of model layers, the old temperature profile is mapped onto the new adjusted 
vertical coordinates using 
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Note that K  must be increased by one when the KTA mixed layer model is used to account for 
the two sublayers within the layer containing the mixed layer base. In practice, the summation is 
performed between 1k k=  to 2k k=  in order to eliminate layers on the old vertical grid that do 
not overlap layers on the new grid. The downside to this procedure occurs in a model layer k  if 
the interface k  above is relocated upward and the interface 1k +  below is relocated downward. 
In this case, the simultaneous mixing across both interfaces will prevent perfect restoration of the 
isopycnic reference density in layer k . However, repeated application of this procedure will tend 



to drive the density of layer k  toward its reference density. This fact coupled with the absence of 
directional dependence support our choice of (19) to remap variables on the adjusted grid in lieu 
of a one-way donor cell scheme. 

Donor-cell vertical advection schemes are known to produce numerically induced diffusion. 
For this reason, the re-mapping scheme has been further modified at the Naval Research 
Laboratory by A. J. Wallcraft to use the higher-order PLM algorithm within the nearsurface non-
isopycnic domain where the distances that interfaces are relocated are relatively large, and 
numerical diffusion is thus expected to be large. In the isopycnic interior where mixing is very 
weak, the original remapping algorithm is retained because the PLM algorithm has the 
undesirable effect of changing values of layer variables within a layer when fluid is only 
detrained from that layer. Tests have validated that this undesirable effect is outweighed by the 
positive effect of numerical diffusion reduction. 

After adjusting the thermodynamical variables at pressure grid points, the momentum 
components are then adjusted on the ,u v  grid points in a manner that conserves vertically 
averaged momentum. The old and new vertical coordinates obtained at pressure grid points are 
first interpolated to the u  grid points. The adjustment of u  is then performed using an equation 
of the form (19). The same procedure is used to update v  at the v  grid points.  
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