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General Remarks

There are three diapycnal mixing algorithms included in HY COM version 1.0/2.0. When
HY COM is run with hybrid vertical coordinates and the Kraus-Turner mixed layer model is
used, one of two interior digpycnal mixing algorithms must be selected. The first choiceisis
essentially the implicit KPP mixing scheme with the surface boundary layer algorithm stripped
out, and is presented as model 1 below. The second choice is the explicit MICOM algorithm
modified to run with hybrid vertical coordinates, which is presented as model 2 below. When
HY COM is run with isopycnic vertical coordinates (MICOM mode), the explicit MICOM
algorithm (the one embedded in MICOM 2.8) is used, which is presented as model 3 below.

Both versions of the explicit model mix only the thermodynamical variables and scalars
carried at pressure grid points. The explicit KPP-like model also mixes momentumat u and v
grid points.

Model 1: Hybrid Coordinate Implicit Algorithm (Interior Mixing From KPP)

This model consists of the interior ocean part of the KPP vertical mixing agorithm. Model
variables are decomposed into mean (denoted by an overbar) and turbulent (denoted by a prime)
components. Diapycnal diffusivities and viscosity parameterized in the ocean interior as follows:
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where (K, ,K, K, ) aretheinterior diffusivities of potential temperature, salinity (plus other
scalars), and momentum (viscosity), respectively. Interior diffusivity/viscosity is assumed to
consist of three components, which isillustrated here for potential temperature:

Ky = K§ + K +Kg, (2)
where KS is the contribution of resolved shear instability, K;" isthe contribution of unresolved
shear mstablllty due to the background internal wave field, and Kd is the contribution of double

diffusion. Only the first two processes contribute to viscosity.

The contribution of shear instability is parameterized in terms of the gradient Richardson
number calculated at model interfaces:
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where mixing istriggered when Ri; = Ri; <0.7. The contribution of shear instability isthe same
for g diffusivity, S diffusivity, and viscosity (K*®=K¢ =K$ =Kg), and isgiven by
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where K°=50" 10*m’s*, Ri,=0.7, and P=3.

The diffusivity that results from unresolved background internal wave shear is given by
Ky =K¢=0.1"10"m?s". (4)
Based on the analysis of Peters et al. (1988), Large et al. (1994) determined that viscosity due to
unresolved background internal waves should be an order of magnitude larger, and is thus
assumed to be
KY¥=10"10*m’s". (5)

Regions where double diffusive processes are important are identified using the double
diffusion density ratio:
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wherea and b arethermal expansion coefficients for temperature and salinity, respectively.

For salt fingering (warm, salty water overlying cold, fresh water), salinity/scalar diffusivity is
given by
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and temperature diffusivity is given by
KS =0.7K¢, (8)
where K, =10 10*m?s*, R’ =1.9, and P =3. For diffusive convection, temperature
diffusivity is given by
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wheren, isthe molecular diffusivity of temperature, while salinity/scalar diffusivity is given by
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Giventheresulting K profiles, the vertical diffusion equation is solved using the same
technique as the full KPP mixing scheme. Refer to the document “ Solution of the HY COM
Vertical Diffusion Equation” for more information. Although the full KPP agorithm is a semi -
implicit method, only one iteration is necessary for thisinterior diagpycnal-mixing algorithm
because the mixing is so weak. After mixing is performed at the pressure grid points, the
viscosity coefficients are interpolated to u and v grid points, then the momentum components
are mixed.

Model 2: Hybrid Coordinate Explicit Algorithm

The explicit diapycnal-mixing algorithm used in MICOM is based on the model of
McDougall and Dewar (1998). The central problem in implementing diapycnal mixing in an
isopycnic coordinate model is to exchange potential temperature (q) , salinity (S), and mass
(layer thickness, expressed as p/ r ) between model layers while preserving the isopycnic
reference density in each layer, at the same time satisfying the following conservation laws:
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Theexpression (r /Mt)(Tp/fr ) isthe generalized vertical velocity in isopycnic coordinates
while F,, F are the diapycnal heat and salt fluxes. Although this model was derived for

isopycnic layer models, its useisvalid for hybrid layer models with the actual layer densities, not
their isopycnic reference densities, preserved during the mixing process.

Mutually consistent forms of the turbulent heat, salt, and mass fluxes are derived by
integrating (11) through (13) across individual layers and layer interfaces. In a discrete layer
model, whether or not it isisopycnic, layer variablessuch as q , S, and momentum are assumed
to be constant within layers and to have discontinuities at interfaces. Model layers will be
denoted by index k increasing downward. Interfaces will also be denoted by index k, with
interfaces k and k +1 being located at the top and bottom of layer k, respectively.

Integration of (11) and (12) acrossthe interior of layer k yields
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where d p* = p“**- p* isthethickness of layer k and the fluxes represent values infinitely close
to the interfaces. The fluxes are assumed to have discontinuities at interfaces, but in contrast to
the layer variables, they vary linearly with p in each coordinate layer consistent with the fact
that g /it and S/t are p -independent. Equations (14) and (15) must satisfy the constraint
that r remainsconstant whileq and S change. The required condition is
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are the thermodynamic expansion coefficients for potential temperature and salinity,
respectively. Combining (14) through (16), the constraint becomes
b*(F&' - F&)-a*(F - R')=0. (17)

Physical intuition suggests that the turbulent fluxes immediately above and below an
interface, while usually different, should depend linearly on the magnitude of the discontinuity of
the fluxed variable at the interface. It is also reasonable to postulate that the proportionality
factor isindependent of the fluxed variable. These assumptions are expressed analytically as
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Combining (17) and (18) yields
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To satisfy this relation in general, m“* and m*' must be of the form
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Substitution of these expressions into (18) yields
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Fq ¢ bk(Sk_ Sk-l)_ak(qk_qk-l) q bk(g<+1_ S<)_ak(qk+1_qk)

plus analogous expressions for FX* and F&' involving the same constant c*.

To determine the proportionality factor c* in (19), first note that the denominatorsin (19)
represent arelative jump Ir /r , thefluxesin (19) are finite-difference analogs of expressions of
thegeneral form F, =cr Q/1r for variable Q. If the turbulent fluxesof Q are also
represented in the context of K theory, F, =- KQ/1p. Equating these two expressionsfor F,
resultsin

The fluxes then become
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Due to the physical uncertainties surrounding the magnitude of the exchange coefficient K,
considerable freedom exists in evaluating theterm §r / 9§z in N?. One obvious choice was
selected for use:
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Having derived expressions for the vertical fluxes, the expressions used to advance layer
thickness (massflux), g , and S intime will now be derived. Considering the mass flux first, the
expression (dr /dt)(fp/fr ) isevauated by converting (11) and (12) to flux form and
integrating them across interfaces. This step is taken to remove the ambiguity that §q /ft and
1S/t are indeterminate at interfaces. The flux equations for heat and salt, obtained in the usual

manner by combining the advective forms of the equations with (13), are
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Integrating these equations over an infinitesimally thin slab straddling layer interface k +1 at the

base of layer k (which will be denoted by k +1/2 to avoid confusion with the layer index), the

time tendency terms drop out because of the smallnessof fp/qr , producing
k+1/2
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By virtue of (20) and (21), the two previous expressions reduce to
k+1/2
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This expression gives the mass flux at interface k +1/2 which, in conjunction with the heat and
salt fluxes given by (20), form a consistent set that can be used to solve the conservation
equations for layer thickness, potential temperature, and salinity.

Inserting (26) into (13) and integration over layer k yields
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The G terms have been grouped in a manner that mimics the second derivative of G with
respect to k, which illustrates that diapycnal mixing tends to transfer mass from thick layers
(N? small) to thin layers (N? large). The prognostic equations for heat and salt are obtained
from the flux form of the conservation equations (22) and (23), which are integrated over the

interior portion of layer k to produce
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The G terms have again been arranged to highlight the diffusive nature of the equations.
Equations (27) through (29) are integrated subject to the boundary conditions
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Model 3: Isopycnic Coordinate Explicit Algorithm

When HY COM is run with isopycnic coordinates (MICOM mode), the diapycna mixing
model from MICOM 2.8 isused. In MICOM 2.8, advection and diffusion in interior isopycnic
layers are performed for salinity only, with layer temperature being diagnosed from the equation
of state. The MICOM 2.8 interior diapycnal mixing algorithm is essentially model 2 above, but

with only salinity and layer thickness being advanced in time and temperature diagnosed from
the equation of state.

Refer ences

Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing: areview and a
model with anonlocal boundary layer parameterization. Rev. Geophys., 32, 363-403.

McDougal, T. J. and W. K. Dewar, 1998: Vertical mixing and cabbeling in layered models. J.
Phys. Oceanogr ., 28, 1458-1480.

Peters, H., M. C. Gregg, and J. M. Toole, 1988: On the parameterization of equatorial
turbulence. J. Geophys. Res., 93, 1199-1218.



