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General Remarks 

 
There are three diapycnal mixing algorithms included in HYCOM version 1.0/2.0. When 

HYCOM is run with hybrid vertical coordinates and the Kraus-Turner mixed layer model is 
used, one of two interior diapycnal mixing algorithms must be selected. The first choice is is 
essentially the implicit KPP mixing scheme with the surface boundary layer algorithm stripped 
out, and is presented as model 1 below. The second choice is the explicit MICOM algorithm 
modified to run with hybrid vertical coordinates, which is presented as model 2 below. When 
HYCOM is run with isopycnic vertical coordinates (MICOM mode), the explicit MICOM 
algorithm (the one embedded in MICOM 2.8) is used, which is presented as model 3 below. 

 
Both versions of the explicit model mix only the thermodynamical variables and scalars 

carried at pressure grid points. The explicit KPP-like model also mixes momentum at u  and v  
grid points. 

 
Model 1: Hybrid Coordinate Implicit Algorithm (Interior Mixing From KPP) 

 
This model consists of the interior ocean part of the KPP vertical mixing algorithm. Model 

variables are decomposed into mean (denoted by an overbar) and turbulent (denoted by a prime) 
components. Diapycnal diffusivities and viscosity parameterized in the ocean interior as follows: 
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where ( ), ,S mK K Kθ  are the interior diffusivities of potential temperature, salinity (plus other 
scalars), and momentum (viscosity), respectively. Interior diffusivity/viscosity is assumed to 
consist of three components, which is illustrated here for potential temperature: 
 ,s w dK K K Kθ θ θ θ= + +  (2) 

where sKθ  is the contribution of resolved shear instability, wKθ  is the contribution of unresolved 
shear instability due to the background internal wave field, and dKθ  is the contribution of double 
diffusion. Only the first two processes contribute to viscosity. 

 
The contribution of shear instability is parameterized in terms of the gradient Richardson 

number calculated at model interfaces: 
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where mixing is triggered when 0 0.7gRi Ri= < . The contribution of shear instability is the same 
for θ  diffusivity, S  diffusivity, and viscosity ( )s s s s

S mK K K Kθ= = = , and is given by 
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where 0 4 2 -150 10 m sK −= × , 0 0.7Ri = , and 3P = . 

 
The diffusivity that results from unresolved background internal wave shear is given by 

 4 2 -10.1 10 m s .w w
SK Kθ
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Based on the analysis of Peters et al. (1988), Large et al. (1994) determined that viscosity due to 
unresolved background internal waves should be an order of magnitude larger, and is thus 
assumed to be 
 4 2 -11.0 10 m s .w

mK −= ×  (5) 

 
Regions where double diffusive processes are important are identified using the double 

diffusion density ratio: 
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where α  and β  are thermal expansion coefficients for temperature and salinity, respectively. 
For salt fingering (warm, salty water overlying cold, fresh water), salinity/scalar diffusivity is 
given by 
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and temperature diffusivity is given by 
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where 4 2 -110 10 m sfK −= × , 0 1.9Rρ = , and 3P = .  For diffusive convection, temperature 
diffusivity is given by 
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where Tν  is the molecular diffusivity of temperature, while salinity/scalar diffusivity is given by 
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Given the resulting K  profiles, the vertical diffusion equation is solved using the same 

technique as the full KPP mixing scheme. Refer to the document “Solution of the HYCOM 
Vertical Diffusion Equation” for more information. Although the full KPP algorithm is a semi-
implicit method, only one iteration is necessary for this interior diapycnal-mixing algorithm 
because the mixing is so weak. After mixing is performed at the pressure grid points, the 
viscosity coefficients are interpolated to u  and v  grid points, then the momentum components 
are mixed. 

 
Model 2: Hybrid Coordinate Explicit Algorithm 

 
The explicit diapycnal-mixing algorithm used in MICOM is based on the model of 

McDougall and Dewar (1998). The central problem in implementing diapycnal mixing in an 
isopycnic coordinate model is to exchange potential temperature ( )θ , salinity ( )S , and mass 
(layer thickness, expressed as /p ρ∂ ∂ ) between model layers while preserving the isopycnic 
reference density in each layer, at the same time satisfying the following conservation laws: 
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The expression ( ) ( )/ /t pρ ρ∂ ∂ ∂ ∂  is the generalized vertical velocity in isopycnic coordinates 
while , SF Fθ  are the diapycnal heat and salt fluxes. Although this model was derived for 
isopycnic layer models, its use is valid for hybrid layer models with the actual layer densities, not 
their isopycnic reference densities, preserved during the mixing process. 

 
Mutually consistent forms of the turbulent heat, salt, and mass fluxes are derived by 

integrating (11) through (13) across individual layers and layer interfaces. In a discrete layer 
model, whether or not it is isopycnic, layer variables such as θ , S , and momentum are assumed 
to be constant within layers and to have discontinuities at interfaces. Model layers will be 
denoted by index k  increasing downward. Interfaces will also be denoted by index k , with 
interfaces k  and 1k +  being located at the top and bottom of layer k , respectively. 

 
Integration of (11) and (12) across the interior of layer k  yields 
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where 1k k kp p pδ += −  is the thickness of layer k  and the fluxes represent values infinitely close 
to the interfaces. The fluxes are assumed to have discontinuities at interfaces, but in contrast to 
the layer variables, they vary linearly with p  in each coordinate layer consistent with the fact 
that / tθ∂ ∂  and /S t∂ ∂  are p -independent. Equations (14) and (15) must satisfy the constraint 
that ρ  remains constant while θ  and S  change. The required condition is 
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are the thermodynamic expansion coefficients for potential temperature and salinity, 
respectively. Combining (14) through (16), the constraint becomes 

 ( ) ( ), , , 0.k k l k u k k l u
S SF F F Fθ θβ α− − − =  (17) 

 
Physical intuition suggests that the turbulent fluxes immediately above and below an 

interface, while usually different, should depend linearly on the magnitude of the discontinuity of 
the fluxed variable at the interface. It is also reasonable to postulate that the proportionality 
factor is independent of the fluxed variable. These assumptions are expressed analytically as 

 
1, 1, , ,

1, ,
1 1 1 1

.
k u k u k l k l

k u k lS S
k k k k k k k k

F F F F
m m

S S S S
θ θ

θ θ θ θ

+ +
+

+ + + += = = =
− − − −

 (18) 

Combining (17) and (18) yields 
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To satisfy this relation in general, ,k um  and ,k lm  must be of the form 

 
( ) ( ) ( ) ( )

, ,
1 1 1 1

.
k k

k l k u
k k k k k k k k k k k k

c c
m m

S S S Sβ α θ θ β α θ θ− − + += =
− − − − − −

 

Substitution of these expressions into (18) yields 
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plus analogous expressions for ,k u
SF  and ,k l

SF  involving the same constant kc . 
 

To determine the proportionality factor kc  in (19), first note that the denominators in (19) 
represent a relative jump /ρ ρ∂ , the fluxes in (19) are finite-difference analogs of expressions of 
the general form /QF c Qρ ρ= ∂ ∂  for variable Q . If the turbulent fluxes of Q  are also 
represented in the context of K  theory, /QF K Q p= − ∂ ∂ . Equating these two expressions for QF  
results in 
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The fluxes then become 
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where 
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Due to the physical uncertainties surrounding the magnitude of the exchange coefficient K , 
considerable freedom exists in evaluating the term / zρ∂ ∂  in 2N . One obvious choice was 
selected for use: 
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Having derived expressions for the vertical fluxes, the expressions used to advance layer 

thickness (mass flux), θ , and S  in time will now be derived. Considering the mass flux first, the 
expression ( )( )/ /d dt pρ ρ∂ ∂  is evaluated by converting (11) and (12) to flux form and 
integrating them across interfaces. This step is taken to remove the ambiguity that / tθ∂ ∂  and 

/S t∂ ∂  are indeterminate at interfaces. The flux equations for heat and salt, obtained in the usual 
manner by combining the advective forms of the equations with (13), are 
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and 
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Integrating these equations over an infinitesimally thin slab straddling layer interface 1k +  at the 
base of layer k  (which will be denoted by 1 /2k +  to avoid confusion with the layer index), the 
time tendency terms drop out because of the smallness of /p ρ∂ ∂ , producing 
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and 
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By virtue of (20) and (21), the two previous expressions reduce to 
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This expression gives the mass flux at interface 1 /2k +  which, in conjunction with the heat and 
salt fluxes given by (20), form a consistent set that can be used to solve the conservation 
equations for layer thickness, potential temperature, and salinity. 
 

Inserting (26) into (13) and integration over layer k  yields 
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The G  terms have been grouped in a manner that mimics the second derivative of G  with 
respect to k , which illustrates that diapycnal mixing tends to transfer mass from thick layers 
( 2N  small) to thin layers ( 2N  large). The prognostic equations for heat and salt are obtained 
from the flux form of the conservation equations (22) and (23), which are integrated over the 
interior portion of layer k  to produce 
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The G  terms have again been arranged to highlight the diffusive nature of the equations. 
Equations (27) through (29) are integrated subject to the boundary conditions 
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Model 3: Isopycnic Coordinate Explicit Algorithm 
 
When HYCOM is run with isopycnic coordinates (MICOM mode), the diapycnal mixing 

model from MICOM 2.8 is used. In MICOM 2.8, advection and diffusion in interior isopycnic 
layers are performed for salinity only, with layer temperature being diagnosed from the equation 
of state. The MICOM 2.8 interior diapycnal mixing algorithm is essentially model 2 above, but 
with only salinity and layer thickness being advanced in time and temperature diagnosed from 
the equation of state.  
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