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Overview 

 
HYCOM versions 1.0 and 2.0 are equipped with two types of boundary conditions: 

Newtonian relaxation in sponge layers, and full open-ocean boundary conditions. Both of these 
types are summarized in this document. The full open-ocean boundary conditions were not 
implemented as if the initial release of HYCOM 2.0, but since have been activated and tested. 

 
Relaxation Boundary Conditions 

 
HYCOM 1.0/2.0 contains a simple Newtonian relaxation scheme that can be used for 

sponge boundary zones, or more generally for relaxation to climatology within any model 
subdomain specified by the user. Within relaxation boundary zones, temperature, salinity, and 
vertical coordinate pressure levels are updated as follows for each time step: 
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where the hat denotes Levitus climatology, k  is the layer or interface number, and 1µ −  is the 
relaxation time scale. The user specifies the values of 1µ −  at each grid point, setting it to nonzero 
values where relaxation is to be performed. This results in a two-dimensional mask that defines 
the relaxation zones. Software is provided with HYCOM 1.0/2.0 that first horizontally 
interpolated Levitus climatology to model grid points at the original z  levels, then transforms 
these vertical profiles to isopycnic coordinates at each model grid point. Thus, the profiles of µT , $S , and µp  used in (1) are isopycnic beneath the surface mixed layer. 

 
When HYCOM is run with isopycnic vertical coordinates (MICOM mode), temperature and 

salinity are both relaxed in the non-isopycnic mixed layer (layer 1) while salinity only is relaxed 
in deeper layers with temperature diagnosed from the equation of state to preserve the isopycnic 
reference density. When HYCOM is run with hybrid vertical coordinates, both temperature and 
salinity are relaxed in the upper hybn  layers, where hybn  is the user-specified number of hybrid 
layers, and salinity alone is relaxed in deeper layers with temperature diagnosed from the 
equation of state. When HYCOM is run with hybrid coordinates, all pressure interfaces are 
relaxed to climatology. When the model is run with isopycnic coordinates, all interfaces except 2 
are relaxed to avoid adjusting the mixed layer base. Of course, all interfaces greater than 2 are 
prevented from becoming shallower than interface 2. 

 



 
Open Boundary Conditions 

 
Due to the fundamental ill posedness of the open boundary value problem in hydrostatic 

models (e.g. Oliger and Sundstrom, 1978), limited-area modeling with the primitive equations is 
more an art than a science. Open boundary conditions that have worked reasonably well in 
MICOM, and that have been adapted for HYCOM, are discussed here. 

 
The main features of the open boundary scheme are as follows: 
 

1. No distinction is made between inflow and outflow boundaries. 
2. Boundary conditions for the barotropic and baroclinic mode are formulated 

separately. 
3. The well-posed boundary conditions developed by Browning and Kreiss (1982, 

1986), which work well in single-layer, shallow-water models, are applied to the 
barotropic mode, specifically the pressure field and normal velocity component. 

4. Barotropic tangential velocity components are prescribed. 
5. Baroclinic velocities normal to the boundary, as well as total (barotropic plus 

baroclinic) mass fluxes, are prescribed. 
6. Baroclinic tangential velocity components are nudged toward prescribed values. 
7. Other boundary conditions for the baroclinic mode are applied not only at points 

directly on the boundary, but in a finite-width “sponge” zone. They include 
interface pressure nudging, damping of the tendency term in the continuity 
equation, and enhanced viscosity in the momentum equations. 

 
Details 

 
The approach in item 1 above is taken in recognition of the fact that, regardless of the 

direction of the physical flow, information generally passes through the boundary in both 
directions. Making a distinction between inflow and outflow boundaries is therefore justified 
only with regard to advection of material properties, such as temperature, salinity, and potential 
vorticity. 

 
Concerning item 3, Browning and Kreiss (1982, 1986) suggest that well-posed boundary 

conditions for modeling fluid flow in open domains can be derived from the theory of 
characteristics. In the case of two independent variables ,x t , characteristics are curves ( )x t , 
which, if used as coordinate axes, reduce a set of coupled p.d.e.’s to a set of uncoupled o.d.e.’s. 
They arise during attempts to construct, through Taylor series expansion, the solution of a system 
of p.d.e.’s in the vicinity of a boundary curve in ,x t space along which the dependent variables 
and their normal derivatives are prescribed. Specifically, characteristics are curves that are 
unsuitable as boundary curves because the Taylor series coefficients cannot be uniquely 
determined from conditions prescribed along these curves. 

 
Consider a simple hyperbolic system describing gravity wave propagation in a shallow fluid 

layer moving at speed U : 
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There are two sets of characteristics in this problem; their respective slopes in the ,x t  plane are 
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where c gH=  is the gravity wave phase speed. Following the characteristics in ,x t  space is 
equivalent to tracking gravity waves that propagate upstream and downstream through the 
moving fluid. 
 

The o.d.e.’s obtained by transforming ,x t  derivatives in the set of p.d.e.’s in (2) into 
derivatives taken along characteristics are 
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where 1 /c g H=  and subscript s  denotes differentiation along a characteristic. After 
integration over s , these equations state that 1u c h+  and 1u c h− , respectively, are constant 
along the two sets of characteristics. The solution at a given point ,x t  can therefore be 
constructed by superimposing ,u h  combinations carried along the two characteristics 
intersecting at ,x t . This applies to interior as well as boundary points. 

 
Let 0 0c U >? . On the upstream or “western” boundary, two characteristics, 0U c+  going 

from west to east and 0U c−  going from east to west, bring in information from the exterior 
(provided by observations or a coarse-mesh model) and from the interior, respectively. The 
combination of these two characteristics yields the final boundary values of u  and h . If 
superscript o  denotes values obtained from the outer coarse-mesh model or data, i  denotes 
values from the inner, fine-mesh model, and *  denotes the actual boundary values, we have 
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This is a system of two equations for the two sought-after boundary values *, *u h . The solutions 
are 
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Boundary conditions for the case 0 0U <  and the eastern boundary are analogous. If the model 
contains thermodynamic variables satisfying conservation laws dominated by advection 
processes, the method of characteristics suggests that these variables should be updated by coarse 
mesh fields or data at inflow points, and from within the model at outflow points. 

 
Concerning item 5 above, prescribing the mass flux across boundaries is the most direct 

way to stabilize the time-mean circulation in subbasins forced by strong inflow/outflow. 
Concerning item 6 above, nudging is performed by replacing a grid point value φ  by a linear 
combination of φ  and a prescribed value bφ : 



 ( )1 .new bw wφ φ φ= − +  (7) 

If nudging is performed in a finite-width sponge zone, the weight w  should gradually increase 
from zero in the interior of the domain to a finite value 1≤  at the boundary. The width of the 
sponge zone where 0w >  and the rate at which w  increases toward the boundary is best 
determined by experimentation. 

 
The same goes for the viscosity enhancement factor and the damping factor applied to the 

layer thickness tendency. The damping factor should increase from near-zero at the domain 
boundary to a value of 1 at the inner edge of the sponge zone. Viscosity may be increased 
stepwise to as much as 5 or even 10 times its value outside the sponge zone. 
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