New Features of HYCOM

Alan J. Wallcraft Naval Research Laboratory

15th Layered Ocean Model Workshop

February 9, 2011

HYCOM 2.2 (I)

- Maintain all features of HYCOM 2.1
 - Orthogonal curvilinear grids
 - Can emulate Z or Sigma or Sigma-Z models
 - It is "Arbitrary Lagrangian-Eulerian", see: Adcroft and Hallberg, O. Modelling 11 224-233.
 - Explicit support for 1-D and 2-D domains
 - KPP or Kraus-Turner or Mellor-Yamada 2.5 or Price-Weller-Pinkel
 - Rivers as bogused surface precipitation
 - Multiple tracers
 - Off-line one-way nesting
 - Scalability via OpenMP or MPI or both
 Bit-for-bit multi-cpu reproducibility
- Special halo exchange for tripole global grid
 - Arctic dipole patch on standard Mercator globe
 - Logically rectangular domain
 - ◊ Two halves of top edge "fold" together
 - \diamond V-velocity changes sign across the fold

HYCOM 2.2 (IIa)

- Alternative LeapFrog barotropic time splitting
 - Provided by SHOM
 - Twice as expensive as standard scheme
 - ♦ Still a small fraction of total run time
 - Significantly more stable
 - May allow 2x longer baroclinic time step
- Alternative scalar advection techniques
 - Provided by Mohamed Iskandarani
 - Donor Cell, FCT (2nd and 4th order), MPDATA
 - FCT2 replaces MPDATA as standard scheme

Mixed layer changes

- GISS mixed layer model
 Provided by Armando Howard
 KPP bottom boundary layer
 Provided by George Halliwell
- KPP tuning

HYCOM 2.2 (IIb)

- Initial vertical coordinate changes
 - Must always use PCM for isopycnal layers
 - Vertical remapping used PLM for fixed coordinate layers
 - Thin deep iso-pycnal layers
 - Stability from locally referenced potential density
 - Spatially varying layer target densities
 - Oifferent isopycnal layers in semi-enclosed seas
- Recent vertical coordinate changes (2.2.18)
 - hybrlx only active below "fixed coordinate" surface layers
 - Major re-write of HYBGEN by George Halliwell and Alan Wallcraft
 - Must always use PCM for isopycnal layers
 - Vertical remapping uses PLM or PPM or WENO-like PPM (Alexander Shchepetkin) for fixed and non-isopycnal coordinate layers
 - Over the second seco
 - Updated logic for two layers
 (one too dense, other too light)

ANNUAL MEAN EQUATORIAL PACIFIC GLBt0.72 HYCOM VERSION 2.2.03 3M TOP LAYER, GDEM3, 7-T EOS

temperature zonal sec. 0.00n mean: 4.004- 5.004 [06.0H]

ANNUAL MEAN EQUATORIAL PACIFIC GLBt0.72 HYCOM VERSION 2.2.18 3M TOP LAYER, GDEM3, 9-T EOS

temperature zonal sec. 0.00n mean: 4.004- 5.004 [22.3H]

ANNUAL MEAN EQUATORIAL PACIFIC GLBt0.72 HYCOM VERSION 2.2.34 1M TOP LAYER, GDEM4, 17-T EOS

temperature zonal sec. 0.00n mean: 4.004- 5.004 [36.0H]

HYCOM 2.2 (IIc)

- MICOM must "invert" the equation of state
 statement fns. tofsig(r,s) and sofsig(r,t)
- HYCOM must also invert, if density is prognostic
 but not if T & S are prognostic
- Four equation of state options (HYCOM 2.2.34)
 - 7-term, cubic in T and linear in S
 - \circ 9-term, cubic in T and quadratic in S
 - o 12-term, rational function (invertable)
 - 17-term, rational function (not invertable)
- 12-term equation of state
 - $\circ P/Q$, both P and Q quadratic in T & S
 - 18-term for locally referenced pressure
- 17-term equation of state
 - $\circ P/Q$, P cubic T & linear S, Q quartic T & sqrt(S)
 - 25-term for locally referenced pressure
 - Same as MOM 4.1 (Jackett et al., 2006)
 - Must use T & S as prognostic variables
 - Diagnostic programs use Newton iteration from 12-term start

Pot. Density Anomaly at 34 psu and 0 psu

Pot. Density Anomaly at 5 degC and 30 degC

Salinity vs pot. density anomaly w.r.t. Millero Sigma2 at 05degC

HYCOM RELAXATION TO SSS

• Standard HYCOM version:

 $\frac{\partial S_1}{\partial t} = \frac{H_s}{H_1(30 \times 86400)} (S_c - S_1)$

 \circ S_c is climatological SSS

$$\circ$$
 H_s is a constant reference thickness

• E-folding time depends on actual MLD H_m : 30 days $\times H_m/H_s$

o stronger relaxation when the MLD is shallower

- TOPAZ 4:
 - Small fix suggested by Mats Bentsen in order to avoid relaxation in the Gulf Stream.
 - \circ Don't relax where $S_1-S_c>$ 0.5 psu
 - It avoids anomalous reduction of salinity for the water transported in the Nordic Sea.
- HYCOM 2.2.34:
 - \circ Clip $|S_1 S_c|$ at $\Delta S(x, y)$, or
 - \circ Only relax where $|S_1 S_c| < \Delta S(x, y)$
- In latest Global simultions:
 - \circ Only relax where $|S_1 S_c| < 0.5$ psu
 - \circ H_s is 15 m (was 30 m in earlier cases)

$\begin{array}{l} \mbox{MAXIMUM OF ATLANTIC OVERTURNING} \\ \mbox{STREAMFUNCTION} \\ \mbox{STD CASE VS RELAX WHERE } |S_1 - S_c| < 0.5 \mbox{ PSU} \\ \mbox{YR10 GLBt0.72 ERA40-CLIMO} \end{array}$

Maximum of Atlantic Overturning Streamfunction, GLBt0.72 y10

1/12° GLOBAL SSS ANOMALY **OUTSIDE 0.5 PSU IN GULF STREAM BUT ALSO OTHER PLACES**

0

0.5

۲.5

<u>-</u>

N ເງ

N

÷

ц.

25

Ņ

June 15th SSS: 18.0 - PHC

HYCOM 2.2 (IId)

- Improved thermobaricity
 - Use exact formula for the thermobaricity
 - ◊ Eqn. 3 from Sun et al. 1999
 - No single reference state is appropriate for the global ocean
 - ◊ Hallberg, Ocean Modelling, 8, 279-300
 - Use a linear combination of pressure gradients from two out of three reference states
 - ♦ Atlantic (3°C, 35.0 psu)
 - \diamond Arctic/Antarctic (0°C, 34.5 psu)
 - ◊ Mediterranean (13°C, 38.5 psu)
 - Most locations use just one reference state
 - Linear combinations allow smooth transition between states
 - \cdot Do this in shallow water if possible
 - In deep water, constrain the T&S used for thermobaricity to be close to the reference state

HYCOM 2.2 (IIIa)

- Atmospheric forcing changes
 - Option to input ustar fields
 - Sest option for monthly forcing
 - Otherwise calculated from wind stress or speed
 - \circ Can relax to observed SST fields
 - Improved COARE 3.0 bulk exchange coefficients
 - Black-body correction to longwave flux
 - \circ Climatological heat flux offset, \overline{Q}_c

 $Q = (Q_{sw} - Q_{lw}) + (Q_l + Q_s) + \overline{Q}_c$

- $\diamond \overline{Q}_c$ is constant in time
 - \cdot Typically based on the model's climatological SST error, times (say) -45 $Wm^{-2}/^{\circ}C$
- Analytic diurnal heat flux cycle
 - \diamond Need hourly Q_{sw} for good cycle
 - ◊ For 3 or 6 hourly (snapshots or averages)
 - \cdot Input daily-running average Q_{sw} weighted sum for snapshots
 - Apply multiplicative correction: clear-sky_now / clear-sky_daily-average
 - Most cases from NRL use daily-running average only (no diurnal Q_{sw})

HYCOM 2.2 (IIIb)

- Improved support for rivers
 - Still bogused surface precipitation
 - High frequency inter-annual river flow allowed
 - Add it to atmospheric precip, off-line
 - Instead of monthly climatology, or in-addition to it (flow anomalies)
 - Better control of low salinity profiles
 - Option for mass (vs salinity) flux
 - Equation of state more accurate at low salinity
- Tidal forcing
 - Provided by NCEP
 - Body forcing and open boundary forcing
 - Boundary forcing currently for "Flather" ports
 - Body forcing for 8 largest components
 - SAL treated as a fraction of non-steric SSH
 - Tidal drag based on bottom roughness
 - Applied to near-bottom tidal velocity
 - Use a lagged 25-hour average as the non-tidal velocity

◊ Limit e-folding time for stability

HYCOM 2.2 (IIIc)

- New diagnostics within HYCOM (2.2.34)
 - Skip fields in surface archives (smaller files)
 - Time-averaged fields (in archive files)
 - Same format as off-line mean archives
 - No in-line capability to capture variability
 - Instantaneous archives still available
 - Sub-region archive files
 - \diamond Example: hourly 3-D from Global 1/12°
 - · 3-4 small regions only
 - One file per involved MPI task (entire tile)
 - Reconstruct standard regional archive files off-line
 - ◊ Instantaneous archives still available
 - List of locations for profile output
 - Just like itest, jtest .txt profile
 - Synthetic instrumentation
 - Provided by George Halliwell
 - ◊ 3-D particle tracking
 - surface and constant depth drifters
 - ◊ isopycnic drifters
 - o fixed instruments and moorings

HYCOM 2.2 (IIId)

I/O optimizations

- Typically, all I/O is from a single MPI task
- I/O can be a bottleneck when running on many processors
 - ◊ MPI-2 I/O option
 - \cdot Do I/O from 1st MPI task in each row of tiles
 - HYCOM files are always big-endian, but Intel and AMD are little-endian
 - ENDIAN_IO macro faster than compiler switch and does the conversion in parallel
- Removes density from restart and archive files
 - ◊ Less I/O, smaller files
 - Aust track which equation of state is used
- \circ Skip fields in surface archives

◊ Less I/O, smaller files

- Sub-region archive files
 - One file per involved MPI task
 - Can be much faster than writing a full archive
- List of locations for profile output
 - \diamond I/O is small and from local MPI task
 - ◊ Can replace 3-D archives in some cases

HYCOM 2.2 AND SEA ICE

- Finer control over energy loan ice model
 - Melting point can be linear in salinity
 - Set ice minimum and maximum thickness
 - Set ice vertical temperature gradient
 - \diamond Or get ice surface temperature from T_a
 - Made compatible with coupled sea-ice approach
- Two-way coupling to LANL's CICE sea ice model
 - HYCOM exports:
 - \diamond SST, SSS, SSH
 - Surface Currents
 - Available Freeze/Melt Heat Flux
 - CICE exports:
 - ◊ Ice Concentration
 - ◊ Ice-Ocean Stress
 - ◇ Actual Freeze/Melt Heat/Salt/Mass Flux
 - Solar Radiation at Ice Base
 - Coupling via the Earth System Modeling Framework
 - Currently for non-global domains only

HYCOM 2.2 AND CCSM

- Community Climate System Model http://www.ccsm.ucar.edu/
 - Fully-coupled, global climate model
 - Sea-Ice: CICE
 - Ocean: POP
- HYCOM can be used in place of POP in CCSM3
- Uses the standard HYCOM source code
- Subdirectory CCSM3 used to hold and build the CCSM3 version
 - Some source code files are specific to CCSM3
 - HYCOM ".f" files are renamed ".F" to simplify CCMS3 integration
 - Macro USE_CCSM3 for CCSM3-specific code

HYCOM 2.2 (IV)

- Climatological nesting now allowed
 - Start from monthly mean outer model archive files
 - Allows nested runs longer than the outer run
 - ♦ But with less accurate boundary state
 - Probably only suitable for regional nests
- Nesting no longer requires co-located grids
 - General horizontal interpolation (curvilinear grids)
 - Find the source array-index-space location of each point on the target grid
 - · Produces a regional.gmap file (do once)
 - Bi-linear interpolation
 - \diamond archive to archive or field to field
- Hybrid to fixed vertical grid remapper
 - Allows fixed-coordinate nests inside hybrid coordinate outer domains

 - ♦ HYCOM to NCOM

HYCOM 2.2 (V)

- Enhanced hycomproc and fieldproc
 - NCAR-graphics based
 - Many more color palette options
 Can read in an arbitrary palette
 - Mark locations, and draw tracks, on plot
 - Plot diffusion coefficients and tracers (hycomproc)
 - Overlay vector and line-contours (fieldproc)
 - Vectors can optionally follow streamlines
- Added fieldcell
 - Like fieldproc, but for cell-array (vs contouring)
 - Mark locations and draw tracks
 - Overlay line-contours
 - Uses NCAR's map projections
 - Typically much faster than fieldproc, but can leave unfilled cells
 - Option to increase resolution of input (bi-linear interpolation)

EXAMPLE OF FIELDPROC SSH, SURFACE CURRENTS, AND BATHYMETRY

FSD (cm) and V.1 - Jan Year 20

HYCOM 2.2 (VI)

- Diagnostic fields to netCDF and other file formats
 - Any p-grid fields in HYCOM ".a" file
 - On original grid, or
 - Sinned into Ion-lat cells
 - Archive fields in layer space
 - On p-grid (interpolated velocity)
 - 3-D archive fields interpolated to z-space
 - \diamond On p-grid, or
 - Sampled at stations or along arbitrary tracks
 - 3-D archive fields sampled on iso-therms
 - Meridional stream-function from (mean) 3-D archive
 - In logical array space (rectilinear grids)
 - Sinned to latitude bands (curvilinear grids)
- Atmospheric forcing native grid files
 - NRL .D or (new) netCDF integer*2
 - Use bi-cubic interpolation for stresses
 - ◊ Faster than cubic spline, equally good curl

CANDIDATE FEATURES FOR HYCOM 2.3

- Wind drag coefficient based on model SST
- Wave forcing
 - Stokes Drift Current (SDC)
 - Surface Wave Radiation Stress Gradents (WRSG)
 - Bottom Orbital Wave Current (OWC)
- Regional tides and Browning-Kreiss nesting
- Wetting and Drying
- New framework for mixed layer sub-models
 - Support generic two-equation models
 - Decouple vertical grids for dynamics and mixing
- Fully region-independent
 - Compile once, run on any region and any number of processors
 - Run-time memory allocation
 - Might reduce performance (fewer compiler optimizations available)
 - Needed for full ESMF compliance
 - Single executable, multiple components each running on separate cpus
 - HYCOM arrays currently on all cpus