HYCOM Model Development, Validation, and Documentation

Alan J. Wallcraft
Naval Research Laboratory

8th Hybrid Coordinate Ocean Model Workshop

August 21, 2003
HYCOM 2.1.03 (I)

- First public release of HYCOM 2.1
 - September, 2002
- Maintain all features of HYCOM 2.0
 - Requires Fortran 90
 - Can use HYCOM for pure iso-pycnal cases
 - KPP or Kraus-Turner mixed-layer
 - Energy-Loan (passive) ice model
 - High frequency atmospheric forcing
 - New I/O scheme (.a and .b files)
 - Scalability via OpenMP or MPI or both
 * Bit-for-bit multi-cpu reproducibility
HYCOM 2.1.03 (II)

- Orthogonal curvilinear grids
- Fully global domains
 - Near-global Mercator already in HYCOM 2.0
 - Pan-Am grid with closed Bering Strait
 * Open Bering Strait requires a special halo exchange (still not available)
- Multiple tracers
 - Passive
 - Simple biology (NPZ or NPZD)
 * Most of infrastructure in place
 * More work needed on biology and boundary conditions
- Rivers as bogused surface precipitation
 - Annual or monthly climatology
HYCOM 2.1.03 (III)

- Off-line one-way nesting
 - Similar to MICOM
 * Exact b.c. for depth averaged component
 * Relaxation for 3-D T/S/pressure/velocity
 - Based on relaxation to climatology
 - But with addition of velocity relaxation
 - Interpolate to target domain off-line
 * Source domain to target domain archive files
 * Nested model does not “know” about enclosing domain
 * Can discard deep iso-pycnal layers
 * Can remap to new vertical coordinate
 - Get boundary data from input archive files
 * Simplifies scalability
 * At the cost of more I/O and bigger files

- Same resolution nesting unexpectedly useful
 - No need to rerun large domain
 - Change atmospheric forcing (e.g. use MM5)
 - Change vertical structure
 - Tracer studies (e.g. add biology)
HYCOM 2.1.03 (IV)

- More general fixed (sigma/Z) vertical coordinate
 - Emulate Z or Sigma or Sigma-Z models
 - HYCOM has partial cells
 * Emulate full cell Z models with the appropriate bathymetry
- Alternative mixed-layer models
 - Mellor-Yamada 2.5
 - Price-Weller-Pinkel
- Explicit support for 1-D and 2-D domains
 - Tiling allows periodic domains
 - 1-D is 2x2 doubly periodic domain
 * Only read/write .b files
 - 2-D is Nx2 periodic domain
 * Infinite f-plane
HYCOM 2.1 (V)

- Region-independent setup and diagnostics
 - Dynamic memory allocation
 - Compile once for all domains
 - Actual model code still domain-dependent

- Restart processing
 - HYCOM from MICOM
 - HYCOM from archive file
 - HYCOM from coarser resolution HYCOM
 - Change land/sea boundary

- Archive processing
 - Add/subtract/merge layers
 - Remap to new vertical coordinate
 - Mean and variability
 - Off-line sampling
 * Vertical profiles
 * Transport sections
 - To netCDF and other file formats
 * All x-y “hycomproc” fields
 * Interpolated to z-space
HYCOM FILE FORMAT

- MICOM’s PAKK I/O not efficient or accurate
- HYCOM 2.1 reads/writes "a and b" files
 - "a" is a raw IEEE REAL*4 array file (Fortran direct access)
 - "b" is a plain-text header file (Fortran formatted)
- This I/O is simple and portable
- It can easily be parallelized
 - Have the N-th processor read/write every N-th 2-D array record
- Convert to netCDF off-line
 - Climate and Forecast (CF) conventions
 * Extension of COARDS conventions
 - Supports curvilinear grids
 * Most existing software is for COARDS only
 - Unlimited time dimension
 * Simplifies time concatenation
 - Safest to have single field per file
 * Avoids all 2GB limits
EQUAL AREA DOMAIN DECOMPOSITION

- Simplest domain decomposition is equal-sized rectangular tiles
 - Each tile has four neighbors
 - Eight neighbors including halo corners
- Overall speed controlled by slowest tile
 - Probably have an “all ocean” tile
 - no advantage to avoiding land within a tile
- Discard tiles that are entirely over land
 - Simple to implement
 - Does not discard all land
 - P-MICOM probably first ocean model to do this
 - Should be in all MPI-based OGCM’s
IMPROVED DOMAIN DECOMPOSITION

- HYCOM 2.0 and 2.1 allows:
 - Discarded tiles
 - Variable tile size
 - Many North-South neighbors
- Equal-ocean tiling
 - First distribute one axis, then the other
 - Near perfect load balance
 - Some tiles require more memory than others
 - Aspect ratio of rectangle can be large
 - More expensive halo exchange
- Modified equal-area tiling
 - Discard all-land tiles
 - Shift tiles to fit coastline
 - Double-up tiles if less than half ocean
 - Compared to equal-area tiling:
 * Up to 2x the memory requirement
 * More expensive halo exchange
 * Often significantly fewer tiles
MICOM 2-D DOMAIN DECOMPOSITION

2-D Equal-Sized Tiles for MPI

Each Tile has 4 neighbors
Discard “All-Land” Tiles
16x16 = 256 Tiles but only 161 active
Still have significant load imbalance
Each tile has 2 E–W neighbors, but many N–S neighbors.

Compared to 16 x 16 “equal – size” decomposition:

- 30% less work on “worst” tile
- Larger memory requirement
MODIFIED EQUAL AREA TILING

16x16 = 256 Tiles but only 143 Active
12% fewer than equal area tiling
Improvements since 2.1.03

- Vertical remapping uses PLM for fixed coordinate layers
- Thin deep iso-pycnal layers
- Stability from locally referenced potential density
- GISS mixed layer model
- Black-body correction to longwave flux
- Option to relax to observed SST
- Spatially varying iso-pycnal layer target densities
- Nesting no longer requires co-located grids
 - General archive to archive horizontal interpolation
- Hybrid to fixed vertical grid remapper
 - Allows fixed-coordinate nests inside hybrid coordinate outer domains
 * HYCOM to (fixed-grid) HYCOM
 * HYCOM to NCOM
Vertical Remapping

- Vertical remapping has two phases
 - Locating the (new, iso-pycnal) layers
 - Interpolating from old to new layers
- These are not completely separable
 - Can’t locate layers without allowing for interpolation scheme
- Finite Volume approach allows partial separation
 - Define a profile across original layers
 - Use profile in deciding where to put layers
 - Integrate this profile to get new layer averages
- In HYCOM (hybgen)
 - Highly non-uniform layer thicknesses
 - Same number of layers
 - Most (iso-pycnal) layers don’t change
 - Layers don’t move more than one grid length(?)
 - Use PCM (Donor Cell) “advection”
 * Profile is constant across each layer
 * May be only practical scheme for hybgen
Off-line Vertical Remapping

- Off-line remapping is harder
 - Highly non-uniform layer thicknesses
 - Different number of layers
 - Many layers change location
 - Layers can “move” a long way

- Desirable properties
 - Simple to compute
 - Overall conservation
 - No change if layer is the same
 - Excludes linear between cell centers
 - No new extrema

- PCM
 - Too “diffusive”
 - Lowest order of a family (PLM/PQM)

- Piecewise Quadratic Method
 - Quadratic across cell
 - Very popular advection scheme
 - Tested it, but probably overkill
Off-line Vertical Remapping (II)

- Piecewise Linear Method (Van Leer)
 - Linear profile, mean at cell center
 - Discontinuous at cell interfaces
 - Several choices for the slope
 - Tim Campbell developed interpolation variant
 * Non-uniform layer thickness
 * Maximize “smoothness” across interfaces
 - Local optimum, global too much work

- Archive to archive remapper
 - Only for fixed target coordinate
 * Hybrid to sigma-Z

- Archive to data3z
 - Returns fields at fixed depths
 - PCM or linear between cell centers

- Single profile remapper
 - fixed depth version (data3z)
 - fixed cell version (PCM or PLM)
V-Velocity Profile, Year 2000, Day 03, i=251, j=092

PLM with Eq(21)
PPM (mono, no steep)
PLM Remapping of Fixed Coordinate Layers

- In HYCOM 2.1.03, hybgen uses PCM
- Perfect for iso-pycnal layers
 - Most (iso-pycnal) layers don’t change
 - No remapping, no diffusion
 - Detrainment (thinning) does not change density
 - Unique to PCM
 - HYCOM might otherwise be impractical
- Not optimal for fixed coordinates
 - Fixed layers always move
 - PCM is very diffusive
- PCM is a special case of PLM
 - PLM with zero slope
- Use PLM for fixed layers and PCM for iso-pycnals
 - Currently using same scheme for all variables
 - Could use PCM+PLM for density only, or density and salinity only
UP/DOWN-WELLING TEST - SIGMA-Z
PCM (top) vs PLM
UP/DOWN-WELLING TEST - HYBRID
PCM (top) vs PLM+PCM
BLACK SEA SST STATISTICS: PCM

09.1 vs Pathfinder : SST Mean Error (deg C)

09.1 vs Pathfinder : SST RMS Error (deg C)

09.1 vs Pathfinder : SST Skill Score

09.1 vs Pathfinder : SST Correlation Coeff.
BLCK SEA SST STATISTICS: PLM+PCM

09.5 vs Pathfinder : SST Mean Error (deg C)

09.5 vs Pathfinder : SST RMS Error (deg C)

09.5 vs Pathfinder : SST Skill Score

09.5 vs Pathfinder : SST Correlation Coeff.
UP/DOWN-WELLING TEST
THIN DEEP ISO-PYCNAL LAYERS
OTHER NEW FEATURES OF NEXT RELEASE (SEPTEMBER?)

- Arctic bi-polar patch with open Bering Strait
 - For 0.24 degree global domain
- Bottom boundary layer in KPP
- Diagnostics within HYCOM:
 - Time-averaged fields (archive files)
 - Drifters
 - Moored buoy sampling(?)
 - Transport section sampling(?)
- Is anything else needed immediately?
WISHLIST FOR HYCOM (I)

- Fully region-independent
 - Compile once, run on any region and any number of processors
- Tidal forcing
- Even more mixed-layer models
- Support for data assimilation
- Comprehensive tracer support
 - Within HYCOM and off-line
 - In z-space?
- NCAR’s CCSM Coupler
 - CICE sea-ice model
 - Coupled air-ocean-ice
- ESMF compatibility
 - Earth System Modeling Framework
 http://www.esmf.ucar.edu/
 - Alternative to CCSM
 - Much broader support
 - Might allow asynchronous I/O
 - Use ESMF for parallelization(?)
WISHLIST FOR HYCOM (II)

- Improved/Alternative hybrid remapping (hybgen)?
- Improved/Alternative advection (tsadvc)?
- Improved/Alternative split-explicit time scheme?
- Alternative free surface formulation?
 - Currently assume free surface is a small fraction of the total depth
 - Does this work for coastal domains?
 - Includes steric effects, but does not exactly conserve either mass or volume
- Atmospheric pressure forcing?
- Rivers (and surface E-P) as mass exchange?
- Balance E-P via land precip runoff?